iamsuman commited on
Commit
8909510
·
1 Parent(s): a4973de

added description of each pages

Browse files
pages/02_inspector.py CHANGED
@@ -39,6 +39,15 @@ class Map(geemap.Map):
39
 
40
  @solara.component
41
  def Page():
 
 
 
 
 
 
 
 
 
42
  with solara.Column(style={"min-width": "500px"}):
43
  Map.element(
44
  center=[40, -100],
 
39
 
40
  @solara.component
41
  def Page():
42
+ with solara.Column(align="center"):
43
+ markdown = """
44
+
45
+ ### Landsat Inspection
46
+
47
+ **Here, we are using [NASA SRTM Digital Elevation 30m](https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003) for digital elevation and [LANDSAT_LE7_TOA_5YEAR](https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE7_TOA_5YEAR) that contains 5 year composites from all Landsat 7 images in the specified composite period with [TIGER: US Census States 2018](https://developers.google.com/earth-engine/datasets/catalog/TIGER_2018_States) for state geometry clipping**
48
+ """
49
+ solara.Markdown(markdown)
50
+
51
  with solara.Column(style={"min-width": "500px"}):
52
  Map.element(
53
  center=[40, -100],
pages/03_plotting.py CHANGED
@@ -32,6 +32,14 @@ class Map(geemap.Map):
32
 
33
  @solara.component
34
  def Page():
 
 
 
 
 
 
 
 
35
  with solara.Column(style={"min-width": "500px"}):
36
  Map.element(
37
  center=[40, -100],
 
32
 
33
  @solara.component
34
  def Page():
35
+ with solara.Column(align="center"):
36
+ markdown = """
37
+
38
+ ### Plotting Landsat and Hyperion
39
+
40
+ **Here, we are using [LANDSAT_LE7_TOA_5YEAR](https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE7_TOA_5YEAR) that contains 5 year composites from all Landsat 7 images in the specified composite period and [EO1_HYPERION](https://developers.google.com/earth-engine/datasets/catalog/EO1_HYPERION) that produced high resolution hyperspectral imager producing 220 unique spectral channels**
41
+ """
42
+ solara.Markdown(markdown)
43
  with solara.Column(style={"min-width": "500px"}):
44
  Map.element(
45
  center=[40, -100],
pages/04_LULC_split_map.py CHANGED
@@ -47,13 +47,6 @@ class Map(geemap.Map):
47
 
48
  @solara.component
49
  def Page():
50
- with solara.Column(style={"min-width": "500px"}):
51
- Map.element(
52
- center=[40, -100],
53
- zoom=4,
54
- height="600px",
55
- )
56
-
57
  with solara.Column(align="center"):
58
  markdown = """
59
  ## Land cover change mapping using split-panel map
@@ -62,3 +55,10 @@ def Page():
62
  """
63
 
64
  solara.Markdown(markdown)
 
 
 
 
 
 
 
 
47
 
48
  @solara.component
49
  def Page():
 
 
 
 
 
 
 
50
  with solara.Column(align="center"):
51
  markdown = """
52
  ## Land cover change mapping using split-panel map
 
55
  """
56
 
57
  solara.Markdown(markdown)
58
+
59
+ with solara.Column(style={"min-width": "500px"}):
60
+ Map.element(
61
+ center=[40, -100],
62
+ zoom=4,
63
+ height="600px",
64
+ )
pages/05_California_wildfire.py CHANGED
@@ -138,7 +138,8 @@ def Page():
138
 
139
  ### Population Density and wildfire burn area
140
 
141
- **For this analysis we will be using [WorldPop Global Project Population Data: Estimated Residential Population per 100x100m Grid Square dataset](https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop#bands), [MCD64A1.061 MODIS Burned Area Monthly Global 500m (https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1) dataset] with geemap. First, we will compute the zonal statistics to identify the countries with the largest forest area, and then plot them. Here the base tree cover imagery is taken from 2000**
 
142
  #### Population and Wildfire Color Coding
143
  - **No population**: `#000000` ![#000000](https://via.placeholder.com/15/000000/000000?text=+)
144
  - **Low population**: `#6baed6` ![#6baed6](https://via.placeholder.com/15/6baed6/000000?text=+)
 
138
 
139
  ### Population Density and wildfire burn area
140
 
141
+ **For this analysis we will be using [WorldPop Global Project Population Data: Estimated Residential Population per 100x100m Grid Square dataset](https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop#bands) for population, [MCD64A1.061 MODIS Burned Area Monthly Global 500m](https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD64A1) dataset for burn scars,
142
+ [TIGER: US Census States 2018](https://developers.google.com/earth-engine/datasets/catalog/TIGER_2018_States) for state geometry, [DMSP OLS: Nighttime Lights Time Series Version 4](https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS) and [USGS/NLCD](https://www.usgs.gov/centers/eros/science/national-land-cover-database) for land cover with geemap. First, we will compute the zonal statistics to identify the countries with the largest forest area, and then plot them. Here the base tree cover imagery is taken from 2000**
143
  #### Population and Wildfire Color Coding
144
  - **No population**: `#000000` ![#000000](https://via.placeholder.com/15/000000/000000?text=+)
145
  - **Low population**: `#6baed6` ![#6baed6](https://via.placeholder.com/15/6baed6/000000?text=+)