iamsuman commited on
Commit
e6b0edb
·
1 Parent(s): 3096e30

added more maps for visualization

Browse files
Files changed (4) hide show
  1. Dockerfile +1 -0
  2. data/forest_cover.csv +177 -0
  3. pages/00_home.py +122 -44
  4. pages/04_split_map.py +15 -6
Dockerfile CHANGED
@@ -9,6 +9,7 @@ RUN pip install -r requirements.txt
9
 
10
  RUN mkdir ./pages
11
  COPY /pages ./pages
 
12
 
13
  ENV PROJ_LIB='/opt/conda/share/proj'
14
 
 
9
 
10
  RUN mkdir ./pages
11
  COPY /pages ./pages
12
+ COPY /data ./data
13
 
14
  ENV PROJ_LIB='/opt/conda/share/proj'
15
 
data/forest_cover.csv ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sum,GDP_MD_EST,ISO_A2,POP_RANK,ISO_A3,CONTINENT,POP_EST,INCOME_GRP,SUBREGION,system:index,NAME
2
+ 1973.1843137254896,25810.0,TJ,13,TJK,Asia,8468555,5. Low income,Central Asia,00000000000000000068,Tajikistan
3
+ 20752.63529411765,21010.0,KG,13,KGZ,Asia,5789122,5. Low income,Central Asia,00000000000000000069,Kyrgyzstan
4
+ 100135.97254901967,40000.0,KP,15,PRK,Asia,25248140,5. Low income,Eastern Asia,0000000000000000005f,North Korea
5
+ 29323.02745098038,628400.0,BD,17,BGD,Asia,157826578,5. Low income,Southern Asia,00000000000000000063,Bangladesh
6
+ 96498.0235294118,71520.0,NP,15,NPL,Asia,29384297,5. Low income,Southern Asia,00000000000000000065,Nepal
7
+ 6108.8941176470535,64080.0,AF,15,AFG,Asia,34124811,5. Low income,Southern Asia,00000000000000000067,Afghanistan
8
+ 122397.35294117646,58940.0,KH,14,KHM,Asia,16204486,5. Low income,South-Eastern Asia,0000000000000000005a,Cambodia
9
+ 541900.3882352939,311100.0,MM,16,MMR,Asia,55123814,5. Low income,South-Eastern Asia,0000000000000000005d,Myanmar
10
+ 89095.79999999994,1929000.0,KR,16,KOR,Asia,51181299,1. High income: OECD,Eastern Asia,00000000000000000060,South Korea
11
+ 382913.33333333355,4932000.0,JP,17,JPN,Asia,126451398,1. High income: OECD,Eastern Asia,0000000000000000009a,Japan
12
+ 842.7372549019608,297000.0,IL,13,ISR,Asia,8299706,1. High income: OECD,Western Asia,0000000000000000004c,Israel
13
+ 128465.37647058828,460700.0,KZ,14,KAZ,Asia,18556698,3. Upper middle income,Central Asia,00000000000000000005,Kazakhstan
14
+ 250.01960784313727,94720.0,TM,13,TKM,Asia,5351277,3. Upper middle income,Central Asia,0000000000000000006a,Turkmenistan
15
+ 3066764.247058823,2.114E7,CN,18,CHN,Asia,1379302771,3. Upper middle income,Eastern Asia,000000000000000000af,China
16
+ 1956.278431372548,85160.0,LB,13,LBN,Asia,6229794,3. Upper middle income,Western Asia,0000000000000000004d,Lebanon
17
+ 82.0,86190.0,JO,14,JOR,Asia,10248069,3. Upper middle income,Western Asia,00000000000000000053,Jordan
18
+ 231450.07450980396,1670000.0,TR,16,TUR,Asia,80845215,3. Upper middle income,Western Asia,0000000000000000007c,Turkey
19
+ 28086.474509803924,167900.0,AZ,13,AZE,Asia,9961396,3. Upper middle income,Western Asia,00000000000000000090,Azerbaijan
20
+ 388.25882352941176,3600.0,-99,10,-99,Asia,265100,3. Upper middle income,Western Asia,0000000000000000009e,N. Cyprus
21
+ 28879.027450980393,1459000.0,IR,16,IRN,Asia,82021564,3. Upper middle income,Southern Asia,0000000000000000006b,Iran
22
+ 261376.3803921569,1161000.0,TH,16,THA,Asia,68414135,3. Upper middle income,South-Eastern Asia,0000000000000000005b,Thailand
23
+ 322948.2549019607,863000.0,MY,15,MYS,Asia,31381992,3. Upper middle income,South-Eastern Asia,00000000000000000093,Malaysia
24
+ 3274.227450980392,202300.0,UZ,15,UZB,Asia,29748859,4. Lower middle income,Central Asia,00000000000000000006,Uzbekistan
25
+ 117907.9725490196,37000.0,MN,12,MNG,Asia,3068243,4. Lower middle income,Eastern Asia,00000000000000000061,Mongolia
26
+ 4.96470588235294,21220.77,PS,12,PSE,Asia,4543126,4. Lower middle income,Western Asia,0000000000000000004f,Palestine
27
+ 526.2941176470589,596700.0,IQ,15,IRQ,Asia,39192111,4. Lower middle income,Western Asia,00000000000000000057,Iraq
28
+ 1903.9843137254904,50280.0,SY,14,SYR,Asia,18028549,4. Lower middle income,Western Asia,0000000000000000006c,Syria
29
+ 6942.3803921568615,26300.0,AM,12,ARM,Asia,3045191,4. Lower middle income,Western Asia,0000000000000000006d,Armenia
30
+ 56540.65490196079,37270.0,GE,12,GEO,Asia,4926330,4. Lower middle income,Western Asia,00000000000000000091,Georgia
31
+ 2.0,73450.0,YE,15,YEM,Asia,28036829,4. Lower middle income,Western Asia,0000000000000000009c,Yemen
32
+ 565477.1882352942,8721000.0,IN,18,IND,Asia,1281935911,4. Lower middle income,Southern Asia,00000000000000000062,India
33
+ 35028.84705882357,6432.0,BT,11,BTN,Asia,758288,4. Lower middle income,Southern Asia,00000000000000000064,Bhutan
34
+ 29292.000000000025,988200.0,PK,17,PAK,Asia,204924861,4. Lower middle income,Southern Asia,00000000000000000066,Pakistan
35
+ 53333.545098039234,236700.0,LK,15,LKA,Asia,22409381,4. Lower middle income,Southern Asia,0000000000000000008a,Sri Lanka
36
+ 1665379.6392156864,3028000.0,ID,17,IDN,Asia,260580739,4. Lower middle income,South-Eastern Asia,00000000000000000008,Indonesia
37
+ 11541.101960784317,4975.0,TL,12,TLS,Asia,1291358,4. Lower middle income,South-Eastern Asia,00000000000000000018,Timor-Leste
38
+ 226315.57254901956,40960.0,LA,13,LAO,Asia,7126706,4. Lower middle income,South-Eastern Asia,0000000000000000005c,Laos
39
+ 243985.99215686263,594900.0,VN,16,VNM,Asia,96160163,4. Lower middle income,South-Eastern Asia,0000000000000000005e,Vietnam
40
+ 225550.2117647059,801900.0,PH,17,PHL,Asia,104256076,4. Lower middle income,South-Eastern Asia,00000000000000000092,Philippines
41
+ 28136.929411764693,1127000.0,TW,15,TWN,Asia,23508428,2. High income: nonOECD,Eastern Asia,0000000000000000008b,Taiwan
42
+ 0.0,667200.0,AE,13,ARE,Asia,6072475,2. High income: nonOECD,Western Asia,00000000000000000054,United Arab Emirates
43
+ 0.0,334500.0,QA,12,QAT,Asia,2314307,2. High income: nonOECD,Western Asia,00000000000000000055,Qatar
44
+ 0.0,301100.0,KW,12,KWT,Asia,2875422,2. High income: nonOECD,Western Asia,00000000000000000056,Kuwait
45
+ 3.0,173100.0,OM,12,OMN,Asia,3424386,2. High income: nonOECD,Western Asia,00000000000000000058,Oman
46
+ 0.0,1731000.0,SA,15,SAU,Asia,28571770,2. High income: nonOECD,Western Asia,0000000000000000009d,Saudi Arabia
47
+ 2280.4666666666667,29260.0,CY,12,CYP,Asia,1221549,2. High income: nonOECD,Western Asia,0000000000000000009f,Cyprus
48
+ 8098.266666666667,33730.0,BN,10,BRN,Asia,443593,2. High income: nonOECD,South-Eastern Asia,00000000000000000094,Brunei
49
+ 2319213.4862745088,66010.0,CD,16,COD,Africa,83301151,5. Low income,Middle Africa,0000000000000000000b,Dem. Rep. Congo
50
+ 140506.57254901945,30590.0,TD,14,TCD,Africa,12075985,5. Low income,Middle Africa,0000000000000000000f,Chad
51
+ 616192.0666666667,3206.0,CF,13,CAF,Africa,5625118,5. Low income,Middle Africa,00000000000000000042,Central African Rep.
52
+ 689332.0705882346,150600.0,TZ,16,TZA,Africa,53950935,5. Low income,Eastern Africa,00000000000000000001,Tanzania
53
+ 40917.45098039216,4719.0,SO,13,SOM,Africa,7531386,5. Low income,Eastern Africa,0000000000000000000c,Somalia
54
+ 123668.54901960802,152700.0,KE,15,KEN,Africa,47615739,5. Low income,Eastern Africa,0000000000000000000d,Kenya
55
+ 214618.89803921583,28330.0,ZW,14,ZWE,Africa,13805084,5. Low income,Eastern Africa,00000000000000000030,Zimbabwe
56
+ 86470.96862745093,21200.0,MW,14,MWI,Africa,19196246,5. Low income,Eastern Africa,00000000000000000047,Malawi
57
+ 799483.6039215687,35010.0,MZ,15,MOZ,Africa,26573706,5. Low income,Eastern Africa,00000000000000000048,Mozambique
58
+ 24092.22745098036,7892.0,BI,14,BDI,Africa,11466756,5. Low income,Eastern Africa,0000000000000000004b,Burundi
59
+ 389489.87843137246,36860.0,MG,15,MDG,Africa,25054161,5. Low income,Eastern Africa,0000000000000000004e,Madagascar
60
+ 7.0,9169.0,ER,13,ERI,Africa,5918919,5. Low income,Eastern Africa,00000000000000000099,Eritrea
61
+ 364336.48235294106,174700.0,ET,17,ETH,Africa,105350020,5. Low income,Eastern Africa,000000000000000000a3,Ethiopia
62
+ 194680.8470588235,84930.0,UG,15,UGA,Africa,39570125,5. Low income,Eastern Africa,000000000000000000a6,Uganda
63
+ 22382.450980392154,21970.0,RW,14,RWA,Africa,11901484,5. Low income,Eastern Africa,000000000000000000a7,Rwanda
64
+ 476560.6666666666,20880.0,SS,14,SSD,Africa,13026129,5. Low income,Eastern Africa,000000000000000000ae,S. Sudan
65
+ 95910.89803921568,38090.0,ML,14,MLI,Africa,17885245,5. Low income,Western Africa,00000000000000000034,Mali
66
+ 0.0,16710.0,MR,12,MRT,Africa,3758571,5. Low income,Western Africa,00000000000000000035,Mauritania
67
+ 95704.25490196078,24310.0,BJ,14,BEN,Africa,11038805,5. Low income,Western Africa,00000000000000000036,Benin
68
+ 4012.4980392156863,20150.0,NE,14,NER,Africa,19245344,5. Low income,Western Africa,00000000000000000037,Niger
69
+ 46974.909803921604,11610.0,TG,13,TGO,Africa,7965055,5. Low income,Western Africa,0000000000000000003a,Togo
70
+ 235165.07450980353,16080.0,GN,14,GIN,Africa,12413867,5. Low income,Western Africa,0000000000000000003d,Guinea
71
+ 30668.317647058837,2851.0,GW,12,GNB,Africa,1792338,5. Low income,Western Africa,0000000000000000003e,Guinea-Bissau
72
+ 93131.07450980389,3881.0,LR,12,LBR,Africa,4689021,5. Low income,Western Africa,0000000000000000003f,Liberia
73
+ 73541.76862745106,10640.0,SL,13,SLE,Africa,6163195,5. Low income,Western Africa,00000000000000000040,Sierra Leone
74
+ 30147.921568627477,32990.0,BF,15,BFA,Africa,20107509,5. Low income,Western Africa,00000000000000000041,Burkina Faso
75
+ 5629.392156862744,3387.0,GM,12,GMB,Africa,2051363,5. Low income,Western Africa,00000000000000000050,Gambia
76
+ 0.0,906.5,EH,11,ESH,Africa,603253,5. Low income,Northern Africa,00000000000000000002,W. Sahara
77
+ 262065.66274509794,35980.0,GA,12,GAB,Africa,1772255,3. Upper middle income,Middle Africa,00000000000000000044,Gabon
78
+ 1017770.9764705884,189000.0,AO,15,AGO,Africa,29310273,3. Upper middle income,Middle Africa,0000000000000000004a,Angola
79
+ 6207.75294117647,130800.0,TN,14,TUN,Africa,11403800,3. Upper middle income,Northern Africa,00000000000000000051,Tunisia
80
+ 28528.49411764706,609400.0,DZ,15,DZA,Africa,40969443,3. Upper middle income,Northern Africa,00000000000000000052,Algeria
81
+ 147.09019607843138,90890.0,LY,13,LBY,Africa,6653210,3. Upper middle income,Northern Africa,000000000000000000a2,Libya
82
+ 268120.8549019611,739100.0,ZA,16,ZAF,Africa,54841552,3. Upper middle income,Southern Africa,00000000000000000019,South Africa
83
+ 29542.023529411763,35900.0,BW,12,BWA,Africa,2214858,3. Upper middle income,Southern Africa,00000000000000000031,Botswana
84
+ 22104.011764705883,25990.0,NA,12,NAM,Africa,2484780,3. Upper middle income,Southern Africa,00000000000000000032,Namibia
85
+ 416817.4078431374,77240.0,CM,15,CMR,Africa,24994885,4. Lower middle income,Middle Africa,00000000000000000039,Cameroon
86
+ 339031.50196078385,30270.0,CG,12,COG,Africa,4954674,4. Lower middle income,Middle Africa,00000000000000000043,Congo
87
+ 674879.6392156859,65170.0,ZM,14,ZMB,Africa,15972000,4. Lower middle income,Eastern Africa,00000000000000000046,Zambia
88
+ 0.0,3345.0,DJ,11,DJI,Africa,865267,4. Lower middle income,Eastern Africa,000000000000000000a4,Djibouti
89
+ 258.0,12250.0,-99,12,-99,Africa,3500000,4. Lower middle income,Eastern Africa,000000000000000000a5,Somaliland
90
+ 52409.36862745098,39720.0,SN,14,SEN,Africa,14668522,4. Lower middle income,Western Africa,00000000000000000033,Senegal
91
+ 440389.7137254898,1089000.0,NG,17,NGA,Africa,190632261,4. Lower middle income,Western Africa,00000000000000000038,Nigeria
92
+ 192655.00784313737,120800.0,GH,15,GHA,Africa,27499924,4. Lower middle income,Western Africa,0000000000000000003b,Ghana
93
+ 326596.7568627449,87120.0,CI,15,CIV,Africa,24184810,4. Lower middle income,Western Africa,0000000000000000003c,Côte d'Ivoire
94
+ 48230.79215686285,176300.0,SD,15,SDN,Africa,37345935,4. Lower middle income,Northern Africa,0000000000000000000e,Sudan
95
+ 17965.80392156863,282800.0,MA,15,MAR,Africa,33986655,4. Lower middle income,Northern Africa,000000000000000000a0,Morocco
96
+ 13790.498039215687,1105000.0,EG,16,EGY,Africa,97041072,4. Lower middle income,Northern Africa,000000000000000000a1,Egypt
97
+ 230.07450980392161,6019.0,LS,12,LSO,Africa,1958042,4. Lower middle income,Southern Africa,0000000000000000001a,Lesotho
98
+ 19150.749019607858,11060.0,SZ,12,SWZ,Africa,1467152,4. Lower middle income,Southern Africa,00000000000000000049,eSwatini
99
+ 24780.376470588264,31770.0,GQ,11,GNQ,Africa,778358,2. High income: nonOECD,Middle Africa,00000000000000000045,Eq. Guinea
100
+ 267359.1333333333,1052000.0,PL,15,POL,Europe,38476269,1. High income: OECD,Eastern Europe,00000000000000000071,Poland
101
+ 50601.12549019604,267600.0,HU,13,HUN,Europe,9850845,1. High income: OECD,Eastern Europe,00000000000000000073,Hungary
102
+ 47924.498039215716,168800.0,SK,13,SVK,Europe,5445829,1. High income: OECD,Eastern Europe,00000000000000000097,Slovakia
103
+ 80054.7960784314,350900.0,CZ,14,CZE,Europe,10674723,1. High income: OECD,Eastern Europe,00000000000000000098,Czechia
104
+ 523977.40784313745,2699000.0,FR,16,FRA,Europe,67106161,1. High income: OECD,Western Europe,0000000000000000002b,France
105
+ 97047.2039215687,416600.0,AT,13,AUT,Europe,8754413,1. High income: OECD,Western Europe,00000000000000000072,Austria
106
+ 326140.5058823526,3979000.0,DE,16,DEU,Europe,80594017,1. High income: OECD,Western Europe,00000000000000000079,Germany
107
+ 43740.43529411765,496300.0,CH,13,CHE,Europe,8236303,1. High income: OECD,Western Europe,0000000000000000007f,Switzerland
108
+ 2756.811764705884,58740.0,LU,11,LUX,Europe,594130,1. High income: OECD,Western Europe,00000000000000000080,Luxembourg
109
+ 23679.67843137255,508600.0,BE,14,BEL,Europe,11491346,1. High income: OECD,Western Europe,00000000000000000081,Belgium
110
+ 19362.078431372556,870800.0,NL,14,NLD,Europe,17084719,1. High income: OECD,Western Europe,00000000000000000082,Netherlands
111
+ 365233.3411764709,364700.0,NO,13,NOR,Europe,5320045,1. High income: OECD,Northern Europe,00000000000000000015,Norway
112
+ 798572.674509804,498100.0,SE,13,SWE,Europe,9960487,1. High income: OECD,Northern Europe,0000000000000000006e,Sweden
113
+ 68737.8039215687,38700.0,EE,12,EST,Europe,1251581,1. High income: OECD,Northern Europe,00000000000000000078,Estonia
114
+ 30787.376470588217,322000.0,IE,13,IRL,Europe,5011102,1. High income: OECD,Northern Europe,00000000000000000085,Ireland
115
+ 20033.8862745098,264800.0,DK,13,DNK,Europe,5605948,1. High income: OECD,Northern Europe,0000000000000000008d,Denmark
116
+ 133826.63137254893,2788000.0,GB,16,GBR,Europe,64769452,1. High income: OECD,Northern Europe,0000000000000000008e,United Kingdom
117
+ 0.0,16150.0,IS,10,ISL,Europe,339747,1. High income: OECD,Northern Europe,0000000000000000008f,Iceland
118
+ 685101.3490196083,224137.0,FI,13,FIN,Europe,5491218,1. High income: OECD,Northern Europe,00000000000000000096,Finland
119
+ 76612.15686274512,290500.0,GR,14,GRC,Europe,10768477,1. High income: OECD,Southern Europe,0000000000000000007b,Greece
120
+ 60048.12941176472,297100.0,PT,14,PRT,Europe,10839514,1. High income: OECD,Southern Europe,00000000000000000083,Portugal
121
+ 260862.47843137264,1690000.0,ES,15,ESP,Europe,48958159,1. High income: OECD,Southern Europe,00000000000000000084,Spain
122
+ 209196.27450980392,2221000.0,IT,16,ITA,Europe,62137802,1. High income: OECD,Southern Europe,0000000000000000008c,Italy
123
+ 24713.15686274515,68350.0,SI,12,SVN,Europe,1972126,1. High income: OECD,Southern Europe,00000000000000000095,Slovenia
124
+ 2.0806459717647053E7,3745000.0,RU,17,RUS,Europe,142257519,3. Upper middle income,Eastern Europe,00000000000000000012,Russia
125
+ 229999.52941176464,165400.0,BY,13,BLR,Europe,9549747,3. Upper middle income,Eastern Europe,0000000000000000006f,Belarus
126
+ 168833.43529411775,441000.0,RO,15,ROU,Europe,21529967,3. Upper middle income,Eastern Europe,00000000000000000075,Romania
127
+ 84391.92156862754,143100.0,BG,13,BGR,Europe,7101510,3. Upper middle income,Eastern Europe,0000000000000000007a,Bulgaria
128
+ 67439.36470588231,85620.0,LT,12,LTU,Europe,2823859,3. Upper middle income,Northern Europe,00000000000000000076,Lithuania
129
+ 94398.06274509801,50650.0,LV,12,LVA,Europe,1944643,3. Upper middle income,Northern Europe,00000000000000000077,Latvia
130
+ 57478.76862745106,42530.0,BA,12,BIH,Europe,3856181,3. Upper middle income,Southern Europe,000000000000000000a8,Bosnia and Herz.
131
+ 18038.858823529412,29520.0,MK,12,MKD,Europe,2103721,3. Upper middle income,Southern Europe,000000000000000000a9,Macedonia
132
+ 62806.71764705889,101800.0,RS,13,SRB,Europe,7111024,3. Upper middle income,Southern Europe,000000000000000000aa,Serbia
133
+ 14540.960784313726,10610.0,ME,11,MNE,Europe,642550,3. Upper middle income,Southern Europe,000000000000000000ab,Montenegro
134
+ 280463.75294117647,352600.0,UA,15,UKR,Europe,44033874,4. Lower middle income,Eastern Europe,00000000000000000070,Ukraine
135
+ 9963.156862745098,18540.0,MD,12,MDA,Europe,3474121,4. Lower middle income,Eastern Europe,00000000000000000074,Moldova
136
+ 19149.58823529412,33900.0,AL,12,ALB,Europe,3047987,4. Lower middle income,Southern Europe,0000000000000000007d,Albania
137
+ 9351.329411764706,18490.0,XK,12,-99,Europe,1895250,4. Lower middle income,Southern Europe,000000000000000000ac,Kosovo
138
+ 51473.592156862615,94240.0,HR,12,HRV,Europe,4292095,2. High income: nonOECD,Southern Europe,0000000000000000007e,Croatia
139
+ 199275.9843137256,174800.0,NZ,12,NZL,Oceania,4510327,1. High income: OECD,Australia and New Zealand,00000000000000000088,New Zealand
140
+ 884440.8941176472,1189000.0,AU,15,AUS,Oceania,23232413,1. High income: OECD,Australia and New Zealand,00000000000000000089,Australia
141
+ 15812.69019607843,8374.0,FJ,11,FJI,Oceania,920938,4. Lower middle income,Melanesia,00000000000000000000,Fiji
142
+ 442325.7686274506,28020.0,PG,13,PNG,Oceania,6909701,4. Lower middle income,Melanesia,00000000000000000007,Papua New Guinea
143
+ 5893.168627450981,723.0,VU,10,VUT,Oceania,282814,4. Lower middle income,Melanesia,00000000000000000059,Vanuatu
144
+ 18345.180392156875,1198.0,SB,11,SLB,Oceania,647581,4. Lower middle income,Melanesia,00000000000000000087,Solomon Is.
145
+ 16652.53725490195,10770.0,NC,10,NCL,Oceania,279070,2. High income: nonOECD,Melanesia,00000000000000000086,New Caledonia
146
+ 17910.117647058833,19340.0,HT,14,HTI,North America,10646714,5. Low income,Caribbean,00000000000000000010,Haiti
147
+ 9859578.486274512,1674000.0,CA,15,CAN,North America,35623680,1. High income: OECD,Northern America,00000000000000000003,Canada
148
+ 6054365.50980392,1.856E7,US,17,USA,North America,326625791,1. High income: OECD,Northern America,00000000000000000004,United States of America
149
+ 39681.9725490196,161900.0,DO,14,DOM,North America,10734247,3. Upper middle income,Caribbean,00000000000000000011,Dominican Rep.
150
+ 10517.745098039219,25390.0,JM,12,JAM,North America,2990561,3. Upper middle income,Caribbean,0000000000000000002e,Jamaica
151
+ 64306.721568627465,132900.0,CU,14,CUB,North America,11147407,3. Upper middle income,Caribbean,0000000000000000002f,Cuba
152
+ 885007.7254901947,2307000.0,MX,17,MEX,North America,124574795,3. Upper middle income,Central America,0000000000000000001b,Mexico
153
+ 68785.53725490192,93120.0,PA,12,PAN,North America,3753142,3. Upper middle income,Central America,00000000000000000021,Panama
154
+ 50955.345098039244,79260.0,CR,12,CRI,North America,4930258,3. Upper middle income,Central America,00000000000000000022,Costa Rica
155
+ 112443.23529411771,33550.0,NI,13,NIC,North America,6025951,4. Lower middle income,Central America,00000000000000000023,Nicaragua
156
+ 106765.73333333331,43190.0,HN,13,HND,North America,9038741,4. Lower middle income,Central America,00000000000000000024,Honduras
157
+ 18072.84705882353,54790.0,SV,13,SLV,North America,6172011,4. Lower middle income,Central America,00000000000000000025,El Salvador
158
+ 104155.3411764706,131800.0,GT,14,GTM,North America,15460732,4. Lower middle income,Central America,00000000000000000026,Guatemala
159
+ 21308.643137254887,3088.0,BZ,10,BLZ,North America,360346,4. Lower middle income,Central America,00000000000000000027,Belize
160
+ 2889.4980392156854,9066.0,BS,10,BHS,North America,329988,2. High income: nonOECD,Caribbean,00000000000000000013,Bahamas
161
+ 7933.235294117641,131000.0,PR,12,PRI,North America,3351827,2. High income: nonOECD,Caribbean,0000000000000000002d,Puerto Rico
162
+ 4435.568627450981,43570.0,TT,12,TTO,North America,1218208,2. High income: nonOECD,Caribbean,000000000000000000ad,Trinidad and Tobago
163
+ 0.0,2173.0,GL,8,GRL,North America,57713,2. High income: nonOECD,Northern America,00000000000000000016,Greenland
164
+ 13.686274509803923,281.8,FK,4,FLK,South America,2931,1. High income: OECD,South America,00000000000000000014,Falkland Is.
165
+ 627136.5803921572,879400.0,AR,15,ARG,South America,44293293,3. Upper middle income,South America,00000000000000000009,Argentina
166
+ 405493.81960784283,436100.0,CL,14,CHL,South America,17789267,3. Upper middle income,South America,0000000000000000000a,Chile
167
+ 40625.01176470591,73250.0,UY,12,URY,South America,3360148,3. Upper middle income,South America,0000000000000000001c,Uruguay
168
+ 6814060.937254902,3081000.0,BR,17,BRA,South America,207353391,3. Upper middle income,South America,0000000000000000001d,Brazil
169
+ 835082.3372549014,410400.0,PE,15,PER,South America,31036656,3. Upper middle income,South America,0000000000000000001f,Peru
170
+ 995206.6784313729,688000.0,CO,15,COL,South America,47698524,3. Upper middle income,South America,00000000000000000020,Colombia
171
+ 695175.7019607839,468600.0,VE,15,VEN,South America,31304016,3. Upper middle income,South America,00000000000000000028,Venezuela
172
+ 142621.38039215692,8547.0,SR,11,SUR,South America,591919,3. Upper middle income,South America,0000000000000000002a,Suriname
173
+ 223966.34509803937,182400.0,EC,14,ECU,South America,16290913,3. Upper middle income,South America,0000000000000000002c,Ecuador
174
+ 764771.3098039209,78350.0,BO,14,BOL,South America,11138234,4. Lower middle income,South America,0000000000000000001e,Bolivia
175
+ 200122.55294117643,6093.0,GY,11,GUY,South America,737718,4. Lower middle income,South America,00000000000000000029,Guyana
176
+ 363318.41568627453,64670.0,PY,13,PRY,South America,6943739,4. Lower middle income,South America,0000000000000000009b,Paraguay
177
+ 0.0,16.0,TF,1,ATF,Seven seas (open ocean),140,2. High income: nonOECD,Seven seas (open ocean),00000000000000000017,Fr. S. Antarctic Lands
pages/00_home.py CHANGED
@@ -1,59 +1,137 @@
 
 
1
  import solara
2
 
3
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  @solara.component
5
  def Page():
6
- with solara.Column(align="center"):
7
- markdown = """
8
- ## Earth Engine Web Apps
9
-
10
- ### Introduction
11
-
12
- **A collection of Earth Engine web apps developed using [Solara](https://github.com/widgetti/solara) and geemap**
13
-
14
- - Web App: <https://giswqs-solara-geemap.hf.space>
15
- - GitHub: <https://github.com/opengeos/solara-geemap>
16
- - Hugging Face: <https://huggingface.co/spaces/giswqs/solara-geemap>
17
-
18
-
19
- ### How to deploy this app on Hugging Face Spaces
20
-
21
- 1. Go to <https://huggingface.co/spaces/giswqs/solara-geemap/tree/main> and duplicate the space to your own space.
22
-
23
- ![](https://i.imgur.com/gTg4V2x.png)
24
-
25
- 2. You need to set `EARTHENGINE_TOKEN` in order to use Earth Engine. The token value should be copied from the following file depending on your operating system:
26
-
27
- ```text
28
- Windows: C:\\Users\\USERNAME\\.config\\earthengine\\credentials
29
- Linux: /home/USERNAME/.config/earthengine/credentials
30
- MacOS: /Users/USERNAME/.config/earthengine/credentials
31
- ```
32
-
33
- Simply open the file and copy **ALL** the content to the `EARTHENGINE_TOKEN` environment variable.
34
-
35
- ![](https://i.imgur.com/i04gzyH.png)
36
-
37
- ![](https://i.imgur.com/Ex37Ut7.png)
38
-
39
 
40
  ```python
41
- import geemap
42
- geemap.get_ee_token()
43
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- Copy all the content of the printed token and set it as the `EARTHENGINE_TOKEN` environment variable.
 
46
 
47
- 3. After the space is built successfully, click the `Embed this Space` menu and find the `Direct URL` for the app, such as <https://giswqs-solara-geemap.hf.space>.
 
 
48
 
49
- ![](https://i.imgur.com/DNM36sk.png)
 
50
 
51
- ![](https://i.imgur.com/KX82lSf.png)
52
 
53
- 4. Add your own apps (*.py) to the `pages` folder.
 
 
 
 
 
 
54
 
55
- 5. Commit and push your changes to the repository. Wait for the space to be built successfully.
 
 
 
 
 
56
 
57
- """
58
 
 
 
 
 
 
 
 
 
59
  solara.Markdown(markdown)
 
 
1
+ import ee
2
+ import geemap
3
  import solara
4
 
5
+ class Map(geemap.Map):
6
+ def __init__(self, **kwargs):
7
+ super().__init__(**kwargs)
8
+ self.dataset = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
9
+ self.add_forest_loss_gain_data()
10
+ self.add_plot_gui()
11
+ # self.download_data()
12
+
13
+ def add_forest_loss_gain_data(self):
14
+ self.add_basemap("Esri.WorldImagery")
15
+ treeloss = self.dataset.select(["loss"]).selfMask()
16
+ treegain = self.dataset.select(["gain"]).selfMask()
17
+ self.add_layer(treeloss, {"palette": "red"}, "Tree loss")
18
+ self.add_layer(treegain, {"palette": "yellow"}, "Tree gain")
19
+ self.add("layer_manager")
20
+
21
+ def download_data(self):
22
+ treecover = self.dataset.select(["treecover2000"])
23
+ threshold = 10
24
+ treecover_bin = treecover.gte(threshold).selfMask()
25
+ countries = ee.FeatureCollection(geemap.examples.get_ee_path("countries"))
26
+ style = {"color": "#000000ff", "fillColor": "#00000000"}
27
+ self.add_layer(countries.style(**style), {}, "Countries")
28
+ geemap.zonal_stats(
29
+ treecover_bin,
30
+ countries,
31
+ "forest_cover.csv",
32
+ stat_type="SUM",
33
+ denominator=1e6,
34
+ scale=1000,
35
+ )
36
+
37
+ class PieChartPlotter:
38
+ def __init__(self):
39
+ self.geemap = geemap
40
+ self.dataset = self.geemap.ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
41
+ self.zonal_forest_area_by_country()
42
+
43
+ def zonal_forest_area_by_country(self):
44
+ self.geemap.pie_chart(
45
+ "data/forest_cover.csv", names="NAME", values="sum", max_rows=20, height=400
46
+ ).show()
47
+
48
+ class BarChartPlotter:
49
+ def __init__(self):
50
+ self.geemap = geemap
51
+ self.dataset = self.geemap.ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
52
+ self.zonal_forest_area_by_country()
53
+
54
+ def zonal_forest_area_by_country(self):
55
+ self.geemap.bar_chart(
56
+ "data/forest_cover.csv", x="NAME", y="sum", max_rows=20, height=400,
57
+ x_label="Country", y_label="Forest area (km2)",
58
+ ).show()
59
+
60
  @solara.component
61
  def Page():
62
+ ee.Initialize()
63
+ with solara.Column(style={"min-width": "500px"}):
64
+ Map.element(
65
+ center=[40, -100],
66
+ zoom=4,
67
+ height="600px",
68
+ )
69
+
70
+ with solara.Column(align="center"):
71
+ markdown = """
72
+ ## Forest cover gain and loss mapping
73
+
74
+ ### Forest cover mapping
75
+
76
+ **For this analysis we will be using [Hansen Global Forest Change v1.11 (2000-2023) dataset](https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2023_v1_11) and geemap. First, we will compute the zonal statistics to identify the countries with the largest forest area, and then plot them. Here the base tree cover imagery is taken from 2000**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ```python
79
+ dataset = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
80
+ treecover = dataset.select(["treecover2000"])
81
+ threshold = 10
82
+ treecover_bin = treecover.gte(threshold).selfMask()
83
+ countries = ee.FeatureCollection(geemap.examples.get_ee_path("countries"))
84
+ style = {"color": "#000000ff", "fillColor": "#00000000"}
85
+ self.add_layer(countries.style(**style), {}, "Countries")
86
+ geemap.zonal_stats(
87
+ treecover_bin,
88
+ countries,
89
+ "forest_cover.csv",
90
+ stat_type="SUM",
91
+ denominator=1e6,
92
+ scale=1000,
93
+ )
94
+
95
+ self.geemap.pie_chart(
96
+ "data/forest_cover.csv", names="NAME", values="sum", max_rows=20, height=400
97
+ ).show()
98
 
99
+ ```
100
+ """
101
 
102
+ solara.Markdown(markdown)
103
+ with solara.Column(style={"min-width": "500px"}):
104
+ pie_chart_plotter = PieChartPlotter()
105
 
106
+ with solara.Column(align="center"):
107
+ markdown = """
108
 
109
+ **The above give us the percentage overall but not the actual number. Let's plot a bar chart that shows the numbers too**
110
 
111
+ ```python
112
+ self.geemap.bar_chart(
113
+ "data/forest_cover.csv", x="NAME", y="sum", max_rows=20, height=400,
114
+ x_label="Country", y_label="Forest area (km2)",
115
+ ).show()
116
+ ```
117
+ """
118
 
119
+ solara.Markdown(markdown)
120
+ with solara.Column(style={"min-width": "500px"}):
121
+ bar_chart_plotter = BarChartPlotter()
122
+
123
+ with solara.Column(align="center"):
124
+ markdown = """
125
 
126
+ **Now we can calculate the forest loss area by country and plot it**
127
 
128
+ ```python
129
+ treeloss_year = dataset.select(["lossyear"])
130
+
131
+ geemap.zonal_stats( treeloss.gt(0), countries, "treeloss.csv", stat_type="SUM", denominator=1e6, scale=1000,)
132
+
133
+ geemap.bar_chart( "treeloss.csv", x="NAME", y="sum", max_rows=20, x_label="Country", y_label="Forest loss area (km2)",).show()
134
+ ```
135
+ """
136
  solara.Markdown(markdown)
137
+
pages/04_split_map.py CHANGED
@@ -47,9 +47,18 @@ class Map(geemap.Map):
47
 
48
  @solara.component
49
  def Page():
50
- with solara.Column(style={"min-width": "500px"}):
51
- Map.element(
52
- center=[40, -100],
53
- zoom=4,
54
- height="600px",
55
- )
 
 
 
 
 
 
 
 
 
 
47
 
48
  @solara.component
49
  def Page():
50
+ with solara.Column(style={"min-width": "500px"}):
51
+ Map.element(
52
+ center=[40, -100],
53
+ zoom=4,
54
+ height="600px",
55
+ )
56
+
57
+ with solara.Column(align="center"):
58
+ markdown = """
59
+ ## Land cover change mapping using split-panel map
60
+
61
+ **For this analysis we will be using [NLCD 2019: USGS National Land Cover Database, 2019 release dataset](https://developers.google.com/earth-engine/datasets/catalog/USGS_NLCD_RELEASES_2019_REL_NLCD) and geemap.**
62
+ """
63
+
64
+ solara.Markdown(markdown)