Spaces:
Sleeping
Sleeping
added more maps for visualization
Browse files- Dockerfile +1 -0
- data/forest_cover.csv +177 -0
- pages/00_home.py +122 -44
- pages/04_split_map.py +15 -6
Dockerfile
CHANGED
@@ -9,6 +9,7 @@ RUN pip install -r requirements.txt
|
|
9 |
|
10 |
RUN mkdir ./pages
|
11 |
COPY /pages ./pages
|
|
|
12 |
|
13 |
ENV PROJ_LIB='/opt/conda/share/proj'
|
14 |
|
|
|
9 |
|
10 |
RUN mkdir ./pages
|
11 |
COPY /pages ./pages
|
12 |
+
COPY /data ./data
|
13 |
|
14 |
ENV PROJ_LIB='/opt/conda/share/proj'
|
15 |
|
data/forest_cover.csv
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sum,GDP_MD_EST,ISO_A2,POP_RANK,ISO_A3,CONTINENT,POP_EST,INCOME_GRP,SUBREGION,system:index,NAME
|
2 |
+
1973.1843137254896,25810.0,TJ,13,TJK,Asia,8468555,5. Low income,Central Asia,00000000000000000068,Tajikistan
|
3 |
+
20752.63529411765,21010.0,KG,13,KGZ,Asia,5789122,5. Low income,Central Asia,00000000000000000069,Kyrgyzstan
|
4 |
+
100135.97254901967,40000.0,KP,15,PRK,Asia,25248140,5. Low income,Eastern Asia,0000000000000000005f,North Korea
|
5 |
+
29323.02745098038,628400.0,BD,17,BGD,Asia,157826578,5. Low income,Southern Asia,00000000000000000063,Bangladesh
|
6 |
+
96498.0235294118,71520.0,NP,15,NPL,Asia,29384297,5. Low income,Southern Asia,00000000000000000065,Nepal
|
7 |
+
6108.8941176470535,64080.0,AF,15,AFG,Asia,34124811,5. Low income,Southern Asia,00000000000000000067,Afghanistan
|
8 |
+
122397.35294117646,58940.0,KH,14,KHM,Asia,16204486,5. Low income,South-Eastern Asia,0000000000000000005a,Cambodia
|
9 |
+
541900.3882352939,311100.0,MM,16,MMR,Asia,55123814,5. Low income,South-Eastern Asia,0000000000000000005d,Myanmar
|
10 |
+
89095.79999999994,1929000.0,KR,16,KOR,Asia,51181299,1. High income: OECD,Eastern Asia,00000000000000000060,South Korea
|
11 |
+
382913.33333333355,4932000.0,JP,17,JPN,Asia,126451398,1. High income: OECD,Eastern Asia,0000000000000000009a,Japan
|
12 |
+
842.7372549019608,297000.0,IL,13,ISR,Asia,8299706,1. High income: OECD,Western Asia,0000000000000000004c,Israel
|
13 |
+
128465.37647058828,460700.0,KZ,14,KAZ,Asia,18556698,3. Upper middle income,Central Asia,00000000000000000005,Kazakhstan
|
14 |
+
250.01960784313727,94720.0,TM,13,TKM,Asia,5351277,3. Upper middle income,Central Asia,0000000000000000006a,Turkmenistan
|
15 |
+
3066764.247058823,2.114E7,CN,18,CHN,Asia,1379302771,3. Upper middle income,Eastern Asia,000000000000000000af,China
|
16 |
+
1956.278431372548,85160.0,LB,13,LBN,Asia,6229794,3. Upper middle income,Western Asia,0000000000000000004d,Lebanon
|
17 |
+
82.0,86190.0,JO,14,JOR,Asia,10248069,3. Upper middle income,Western Asia,00000000000000000053,Jordan
|
18 |
+
231450.07450980396,1670000.0,TR,16,TUR,Asia,80845215,3. Upper middle income,Western Asia,0000000000000000007c,Turkey
|
19 |
+
28086.474509803924,167900.0,AZ,13,AZE,Asia,9961396,3. Upper middle income,Western Asia,00000000000000000090,Azerbaijan
|
20 |
+
388.25882352941176,3600.0,-99,10,-99,Asia,265100,3. Upper middle income,Western Asia,0000000000000000009e,N. Cyprus
|
21 |
+
28879.027450980393,1459000.0,IR,16,IRN,Asia,82021564,3. Upper middle income,Southern Asia,0000000000000000006b,Iran
|
22 |
+
261376.3803921569,1161000.0,TH,16,THA,Asia,68414135,3. Upper middle income,South-Eastern Asia,0000000000000000005b,Thailand
|
23 |
+
322948.2549019607,863000.0,MY,15,MYS,Asia,31381992,3. Upper middle income,South-Eastern Asia,00000000000000000093,Malaysia
|
24 |
+
3274.227450980392,202300.0,UZ,15,UZB,Asia,29748859,4. Lower middle income,Central Asia,00000000000000000006,Uzbekistan
|
25 |
+
117907.9725490196,37000.0,MN,12,MNG,Asia,3068243,4. Lower middle income,Eastern Asia,00000000000000000061,Mongolia
|
26 |
+
4.96470588235294,21220.77,PS,12,PSE,Asia,4543126,4. Lower middle income,Western Asia,0000000000000000004f,Palestine
|
27 |
+
526.2941176470589,596700.0,IQ,15,IRQ,Asia,39192111,4. Lower middle income,Western Asia,00000000000000000057,Iraq
|
28 |
+
1903.9843137254904,50280.0,SY,14,SYR,Asia,18028549,4. Lower middle income,Western Asia,0000000000000000006c,Syria
|
29 |
+
6942.3803921568615,26300.0,AM,12,ARM,Asia,3045191,4. Lower middle income,Western Asia,0000000000000000006d,Armenia
|
30 |
+
56540.65490196079,37270.0,GE,12,GEO,Asia,4926330,4. Lower middle income,Western Asia,00000000000000000091,Georgia
|
31 |
+
2.0,73450.0,YE,15,YEM,Asia,28036829,4. Lower middle income,Western Asia,0000000000000000009c,Yemen
|
32 |
+
565477.1882352942,8721000.0,IN,18,IND,Asia,1281935911,4. Lower middle income,Southern Asia,00000000000000000062,India
|
33 |
+
35028.84705882357,6432.0,BT,11,BTN,Asia,758288,4. Lower middle income,Southern Asia,00000000000000000064,Bhutan
|
34 |
+
29292.000000000025,988200.0,PK,17,PAK,Asia,204924861,4. Lower middle income,Southern Asia,00000000000000000066,Pakistan
|
35 |
+
53333.545098039234,236700.0,LK,15,LKA,Asia,22409381,4. Lower middle income,Southern Asia,0000000000000000008a,Sri Lanka
|
36 |
+
1665379.6392156864,3028000.0,ID,17,IDN,Asia,260580739,4. Lower middle income,South-Eastern Asia,00000000000000000008,Indonesia
|
37 |
+
11541.101960784317,4975.0,TL,12,TLS,Asia,1291358,4. Lower middle income,South-Eastern Asia,00000000000000000018,Timor-Leste
|
38 |
+
226315.57254901956,40960.0,LA,13,LAO,Asia,7126706,4. Lower middle income,South-Eastern Asia,0000000000000000005c,Laos
|
39 |
+
243985.99215686263,594900.0,VN,16,VNM,Asia,96160163,4. Lower middle income,South-Eastern Asia,0000000000000000005e,Vietnam
|
40 |
+
225550.2117647059,801900.0,PH,17,PHL,Asia,104256076,4. Lower middle income,South-Eastern Asia,00000000000000000092,Philippines
|
41 |
+
28136.929411764693,1127000.0,TW,15,TWN,Asia,23508428,2. High income: nonOECD,Eastern Asia,0000000000000000008b,Taiwan
|
42 |
+
0.0,667200.0,AE,13,ARE,Asia,6072475,2. High income: nonOECD,Western Asia,00000000000000000054,United Arab Emirates
|
43 |
+
0.0,334500.0,QA,12,QAT,Asia,2314307,2. High income: nonOECD,Western Asia,00000000000000000055,Qatar
|
44 |
+
0.0,301100.0,KW,12,KWT,Asia,2875422,2. High income: nonOECD,Western Asia,00000000000000000056,Kuwait
|
45 |
+
3.0,173100.0,OM,12,OMN,Asia,3424386,2. High income: nonOECD,Western Asia,00000000000000000058,Oman
|
46 |
+
0.0,1731000.0,SA,15,SAU,Asia,28571770,2. High income: nonOECD,Western Asia,0000000000000000009d,Saudi Arabia
|
47 |
+
2280.4666666666667,29260.0,CY,12,CYP,Asia,1221549,2. High income: nonOECD,Western Asia,0000000000000000009f,Cyprus
|
48 |
+
8098.266666666667,33730.0,BN,10,BRN,Asia,443593,2. High income: nonOECD,South-Eastern Asia,00000000000000000094,Brunei
|
49 |
+
2319213.4862745088,66010.0,CD,16,COD,Africa,83301151,5. Low income,Middle Africa,0000000000000000000b,Dem. Rep. Congo
|
50 |
+
140506.57254901945,30590.0,TD,14,TCD,Africa,12075985,5. Low income,Middle Africa,0000000000000000000f,Chad
|
51 |
+
616192.0666666667,3206.0,CF,13,CAF,Africa,5625118,5. Low income,Middle Africa,00000000000000000042,Central African Rep.
|
52 |
+
689332.0705882346,150600.0,TZ,16,TZA,Africa,53950935,5. Low income,Eastern Africa,00000000000000000001,Tanzania
|
53 |
+
40917.45098039216,4719.0,SO,13,SOM,Africa,7531386,5. Low income,Eastern Africa,0000000000000000000c,Somalia
|
54 |
+
123668.54901960802,152700.0,KE,15,KEN,Africa,47615739,5. Low income,Eastern Africa,0000000000000000000d,Kenya
|
55 |
+
214618.89803921583,28330.0,ZW,14,ZWE,Africa,13805084,5. Low income,Eastern Africa,00000000000000000030,Zimbabwe
|
56 |
+
86470.96862745093,21200.0,MW,14,MWI,Africa,19196246,5. Low income,Eastern Africa,00000000000000000047,Malawi
|
57 |
+
799483.6039215687,35010.0,MZ,15,MOZ,Africa,26573706,5. Low income,Eastern Africa,00000000000000000048,Mozambique
|
58 |
+
24092.22745098036,7892.0,BI,14,BDI,Africa,11466756,5. Low income,Eastern Africa,0000000000000000004b,Burundi
|
59 |
+
389489.87843137246,36860.0,MG,15,MDG,Africa,25054161,5. Low income,Eastern Africa,0000000000000000004e,Madagascar
|
60 |
+
7.0,9169.0,ER,13,ERI,Africa,5918919,5. Low income,Eastern Africa,00000000000000000099,Eritrea
|
61 |
+
364336.48235294106,174700.0,ET,17,ETH,Africa,105350020,5. Low income,Eastern Africa,000000000000000000a3,Ethiopia
|
62 |
+
194680.8470588235,84930.0,UG,15,UGA,Africa,39570125,5. Low income,Eastern Africa,000000000000000000a6,Uganda
|
63 |
+
22382.450980392154,21970.0,RW,14,RWA,Africa,11901484,5. Low income,Eastern Africa,000000000000000000a7,Rwanda
|
64 |
+
476560.6666666666,20880.0,SS,14,SSD,Africa,13026129,5. Low income,Eastern Africa,000000000000000000ae,S. Sudan
|
65 |
+
95910.89803921568,38090.0,ML,14,MLI,Africa,17885245,5. Low income,Western Africa,00000000000000000034,Mali
|
66 |
+
0.0,16710.0,MR,12,MRT,Africa,3758571,5. Low income,Western Africa,00000000000000000035,Mauritania
|
67 |
+
95704.25490196078,24310.0,BJ,14,BEN,Africa,11038805,5. Low income,Western Africa,00000000000000000036,Benin
|
68 |
+
4012.4980392156863,20150.0,NE,14,NER,Africa,19245344,5. Low income,Western Africa,00000000000000000037,Niger
|
69 |
+
46974.909803921604,11610.0,TG,13,TGO,Africa,7965055,5. Low income,Western Africa,0000000000000000003a,Togo
|
70 |
+
235165.07450980353,16080.0,GN,14,GIN,Africa,12413867,5. Low income,Western Africa,0000000000000000003d,Guinea
|
71 |
+
30668.317647058837,2851.0,GW,12,GNB,Africa,1792338,5. Low income,Western Africa,0000000000000000003e,Guinea-Bissau
|
72 |
+
93131.07450980389,3881.0,LR,12,LBR,Africa,4689021,5. Low income,Western Africa,0000000000000000003f,Liberia
|
73 |
+
73541.76862745106,10640.0,SL,13,SLE,Africa,6163195,5. Low income,Western Africa,00000000000000000040,Sierra Leone
|
74 |
+
30147.921568627477,32990.0,BF,15,BFA,Africa,20107509,5. Low income,Western Africa,00000000000000000041,Burkina Faso
|
75 |
+
5629.392156862744,3387.0,GM,12,GMB,Africa,2051363,5. Low income,Western Africa,00000000000000000050,Gambia
|
76 |
+
0.0,906.5,EH,11,ESH,Africa,603253,5. Low income,Northern Africa,00000000000000000002,W. Sahara
|
77 |
+
262065.66274509794,35980.0,GA,12,GAB,Africa,1772255,3. Upper middle income,Middle Africa,00000000000000000044,Gabon
|
78 |
+
1017770.9764705884,189000.0,AO,15,AGO,Africa,29310273,3. Upper middle income,Middle Africa,0000000000000000004a,Angola
|
79 |
+
6207.75294117647,130800.0,TN,14,TUN,Africa,11403800,3. Upper middle income,Northern Africa,00000000000000000051,Tunisia
|
80 |
+
28528.49411764706,609400.0,DZ,15,DZA,Africa,40969443,3. Upper middle income,Northern Africa,00000000000000000052,Algeria
|
81 |
+
147.09019607843138,90890.0,LY,13,LBY,Africa,6653210,3. Upper middle income,Northern Africa,000000000000000000a2,Libya
|
82 |
+
268120.8549019611,739100.0,ZA,16,ZAF,Africa,54841552,3. Upper middle income,Southern Africa,00000000000000000019,South Africa
|
83 |
+
29542.023529411763,35900.0,BW,12,BWA,Africa,2214858,3. Upper middle income,Southern Africa,00000000000000000031,Botswana
|
84 |
+
22104.011764705883,25990.0,NA,12,NAM,Africa,2484780,3. Upper middle income,Southern Africa,00000000000000000032,Namibia
|
85 |
+
416817.4078431374,77240.0,CM,15,CMR,Africa,24994885,4. Lower middle income,Middle Africa,00000000000000000039,Cameroon
|
86 |
+
339031.50196078385,30270.0,CG,12,COG,Africa,4954674,4. Lower middle income,Middle Africa,00000000000000000043,Congo
|
87 |
+
674879.6392156859,65170.0,ZM,14,ZMB,Africa,15972000,4. Lower middle income,Eastern Africa,00000000000000000046,Zambia
|
88 |
+
0.0,3345.0,DJ,11,DJI,Africa,865267,4. Lower middle income,Eastern Africa,000000000000000000a4,Djibouti
|
89 |
+
258.0,12250.0,-99,12,-99,Africa,3500000,4. Lower middle income,Eastern Africa,000000000000000000a5,Somaliland
|
90 |
+
52409.36862745098,39720.0,SN,14,SEN,Africa,14668522,4. Lower middle income,Western Africa,00000000000000000033,Senegal
|
91 |
+
440389.7137254898,1089000.0,NG,17,NGA,Africa,190632261,4. Lower middle income,Western Africa,00000000000000000038,Nigeria
|
92 |
+
192655.00784313737,120800.0,GH,15,GHA,Africa,27499924,4. Lower middle income,Western Africa,0000000000000000003b,Ghana
|
93 |
+
326596.7568627449,87120.0,CI,15,CIV,Africa,24184810,4. Lower middle income,Western Africa,0000000000000000003c,Côte d'Ivoire
|
94 |
+
48230.79215686285,176300.0,SD,15,SDN,Africa,37345935,4. Lower middle income,Northern Africa,0000000000000000000e,Sudan
|
95 |
+
17965.80392156863,282800.0,MA,15,MAR,Africa,33986655,4. Lower middle income,Northern Africa,000000000000000000a0,Morocco
|
96 |
+
13790.498039215687,1105000.0,EG,16,EGY,Africa,97041072,4. Lower middle income,Northern Africa,000000000000000000a1,Egypt
|
97 |
+
230.07450980392161,6019.0,LS,12,LSO,Africa,1958042,4. Lower middle income,Southern Africa,0000000000000000001a,Lesotho
|
98 |
+
19150.749019607858,11060.0,SZ,12,SWZ,Africa,1467152,4. Lower middle income,Southern Africa,00000000000000000049,eSwatini
|
99 |
+
24780.376470588264,31770.0,GQ,11,GNQ,Africa,778358,2. High income: nonOECD,Middle Africa,00000000000000000045,Eq. Guinea
|
100 |
+
267359.1333333333,1052000.0,PL,15,POL,Europe,38476269,1. High income: OECD,Eastern Europe,00000000000000000071,Poland
|
101 |
+
50601.12549019604,267600.0,HU,13,HUN,Europe,9850845,1. High income: OECD,Eastern Europe,00000000000000000073,Hungary
|
102 |
+
47924.498039215716,168800.0,SK,13,SVK,Europe,5445829,1. High income: OECD,Eastern Europe,00000000000000000097,Slovakia
|
103 |
+
80054.7960784314,350900.0,CZ,14,CZE,Europe,10674723,1. High income: OECD,Eastern Europe,00000000000000000098,Czechia
|
104 |
+
523977.40784313745,2699000.0,FR,16,FRA,Europe,67106161,1. High income: OECD,Western Europe,0000000000000000002b,France
|
105 |
+
97047.2039215687,416600.0,AT,13,AUT,Europe,8754413,1. High income: OECD,Western Europe,00000000000000000072,Austria
|
106 |
+
326140.5058823526,3979000.0,DE,16,DEU,Europe,80594017,1. High income: OECD,Western Europe,00000000000000000079,Germany
|
107 |
+
43740.43529411765,496300.0,CH,13,CHE,Europe,8236303,1. High income: OECD,Western Europe,0000000000000000007f,Switzerland
|
108 |
+
2756.811764705884,58740.0,LU,11,LUX,Europe,594130,1. High income: OECD,Western Europe,00000000000000000080,Luxembourg
|
109 |
+
23679.67843137255,508600.0,BE,14,BEL,Europe,11491346,1. High income: OECD,Western Europe,00000000000000000081,Belgium
|
110 |
+
19362.078431372556,870800.0,NL,14,NLD,Europe,17084719,1. High income: OECD,Western Europe,00000000000000000082,Netherlands
|
111 |
+
365233.3411764709,364700.0,NO,13,NOR,Europe,5320045,1. High income: OECD,Northern Europe,00000000000000000015,Norway
|
112 |
+
798572.674509804,498100.0,SE,13,SWE,Europe,9960487,1. High income: OECD,Northern Europe,0000000000000000006e,Sweden
|
113 |
+
68737.8039215687,38700.0,EE,12,EST,Europe,1251581,1. High income: OECD,Northern Europe,00000000000000000078,Estonia
|
114 |
+
30787.376470588217,322000.0,IE,13,IRL,Europe,5011102,1. High income: OECD,Northern Europe,00000000000000000085,Ireland
|
115 |
+
20033.8862745098,264800.0,DK,13,DNK,Europe,5605948,1. High income: OECD,Northern Europe,0000000000000000008d,Denmark
|
116 |
+
133826.63137254893,2788000.0,GB,16,GBR,Europe,64769452,1. High income: OECD,Northern Europe,0000000000000000008e,United Kingdom
|
117 |
+
0.0,16150.0,IS,10,ISL,Europe,339747,1. High income: OECD,Northern Europe,0000000000000000008f,Iceland
|
118 |
+
685101.3490196083,224137.0,FI,13,FIN,Europe,5491218,1. High income: OECD,Northern Europe,00000000000000000096,Finland
|
119 |
+
76612.15686274512,290500.0,GR,14,GRC,Europe,10768477,1. High income: OECD,Southern Europe,0000000000000000007b,Greece
|
120 |
+
60048.12941176472,297100.0,PT,14,PRT,Europe,10839514,1. High income: OECD,Southern Europe,00000000000000000083,Portugal
|
121 |
+
260862.47843137264,1690000.0,ES,15,ESP,Europe,48958159,1. High income: OECD,Southern Europe,00000000000000000084,Spain
|
122 |
+
209196.27450980392,2221000.0,IT,16,ITA,Europe,62137802,1. High income: OECD,Southern Europe,0000000000000000008c,Italy
|
123 |
+
24713.15686274515,68350.0,SI,12,SVN,Europe,1972126,1. High income: OECD,Southern Europe,00000000000000000095,Slovenia
|
124 |
+
2.0806459717647053E7,3745000.0,RU,17,RUS,Europe,142257519,3. Upper middle income,Eastern Europe,00000000000000000012,Russia
|
125 |
+
229999.52941176464,165400.0,BY,13,BLR,Europe,9549747,3. Upper middle income,Eastern Europe,0000000000000000006f,Belarus
|
126 |
+
168833.43529411775,441000.0,RO,15,ROU,Europe,21529967,3. Upper middle income,Eastern Europe,00000000000000000075,Romania
|
127 |
+
84391.92156862754,143100.0,BG,13,BGR,Europe,7101510,3. Upper middle income,Eastern Europe,0000000000000000007a,Bulgaria
|
128 |
+
67439.36470588231,85620.0,LT,12,LTU,Europe,2823859,3. Upper middle income,Northern Europe,00000000000000000076,Lithuania
|
129 |
+
94398.06274509801,50650.0,LV,12,LVA,Europe,1944643,3. Upper middle income,Northern Europe,00000000000000000077,Latvia
|
130 |
+
57478.76862745106,42530.0,BA,12,BIH,Europe,3856181,3. Upper middle income,Southern Europe,000000000000000000a8,Bosnia and Herz.
|
131 |
+
18038.858823529412,29520.0,MK,12,MKD,Europe,2103721,3. Upper middle income,Southern Europe,000000000000000000a9,Macedonia
|
132 |
+
62806.71764705889,101800.0,RS,13,SRB,Europe,7111024,3. Upper middle income,Southern Europe,000000000000000000aa,Serbia
|
133 |
+
14540.960784313726,10610.0,ME,11,MNE,Europe,642550,3. Upper middle income,Southern Europe,000000000000000000ab,Montenegro
|
134 |
+
280463.75294117647,352600.0,UA,15,UKR,Europe,44033874,4. Lower middle income,Eastern Europe,00000000000000000070,Ukraine
|
135 |
+
9963.156862745098,18540.0,MD,12,MDA,Europe,3474121,4. Lower middle income,Eastern Europe,00000000000000000074,Moldova
|
136 |
+
19149.58823529412,33900.0,AL,12,ALB,Europe,3047987,4. Lower middle income,Southern Europe,0000000000000000007d,Albania
|
137 |
+
9351.329411764706,18490.0,XK,12,-99,Europe,1895250,4. Lower middle income,Southern Europe,000000000000000000ac,Kosovo
|
138 |
+
51473.592156862615,94240.0,HR,12,HRV,Europe,4292095,2. High income: nonOECD,Southern Europe,0000000000000000007e,Croatia
|
139 |
+
199275.9843137256,174800.0,NZ,12,NZL,Oceania,4510327,1. High income: OECD,Australia and New Zealand,00000000000000000088,New Zealand
|
140 |
+
884440.8941176472,1189000.0,AU,15,AUS,Oceania,23232413,1. High income: OECD,Australia and New Zealand,00000000000000000089,Australia
|
141 |
+
15812.69019607843,8374.0,FJ,11,FJI,Oceania,920938,4. Lower middle income,Melanesia,00000000000000000000,Fiji
|
142 |
+
442325.7686274506,28020.0,PG,13,PNG,Oceania,6909701,4. Lower middle income,Melanesia,00000000000000000007,Papua New Guinea
|
143 |
+
5893.168627450981,723.0,VU,10,VUT,Oceania,282814,4. Lower middle income,Melanesia,00000000000000000059,Vanuatu
|
144 |
+
18345.180392156875,1198.0,SB,11,SLB,Oceania,647581,4. Lower middle income,Melanesia,00000000000000000087,Solomon Is.
|
145 |
+
16652.53725490195,10770.0,NC,10,NCL,Oceania,279070,2. High income: nonOECD,Melanesia,00000000000000000086,New Caledonia
|
146 |
+
17910.117647058833,19340.0,HT,14,HTI,North America,10646714,5. Low income,Caribbean,00000000000000000010,Haiti
|
147 |
+
9859578.486274512,1674000.0,CA,15,CAN,North America,35623680,1. High income: OECD,Northern America,00000000000000000003,Canada
|
148 |
+
6054365.50980392,1.856E7,US,17,USA,North America,326625791,1. High income: OECD,Northern America,00000000000000000004,United States of America
|
149 |
+
39681.9725490196,161900.0,DO,14,DOM,North America,10734247,3. Upper middle income,Caribbean,00000000000000000011,Dominican Rep.
|
150 |
+
10517.745098039219,25390.0,JM,12,JAM,North America,2990561,3. Upper middle income,Caribbean,0000000000000000002e,Jamaica
|
151 |
+
64306.721568627465,132900.0,CU,14,CUB,North America,11147407,3. Upper middle income,Caribbean,0000000000000000002f,Cuba
|
152 |
+
885007.7254901947,2307000.0,MX,17,MEX,North America,124574795,3. Upper middle income,Central America,0000000000000000001b,Mexico
|
153 |
+
68785.53725490192,93120.0,PA,12,PAN,North America,3753142,3. Upper middle income,Central America,00000000000000000021,Panama
|
154 |
+
50955.345098039244,79260.0,CR,12,CRI,North America,4930258,3. Upper middle income,Central America,00000000000000000022,Costa Rica
|
155 |
+
112443.23529411771,33550.0,NI,13,NIC,North America,6025951,4. Lower middle income,Central America,00000000000000000023,Nicaragua
|
156 |
+
106765.73333333331,43190.0,HN,13,HND,North America,9038741,4. Lower middle income,Central America,00000000000000000024,Honduras
|
157 |
+
18072.84705882353,54790.0,SV,13,SLV,North America,6172011,4. Lower middle income,Central America,00000000000000000025,El Salvador
|
158 |
+
104155.3411764706,131800.0,GT,14,GTM,North America,15460732,4. Lower middle income,Central America,00000000000000000026,Guatemala
|
159 |
+
21308.643137254887,3088.0,BZ,10,BLZ,North America,360346,4. Lower middle income,Central America,00000000000000000027,Belize
|
160 |
+
2889.4980392156854,9066.0,BS,10,BHS,North America,329988,2. High income: nonOECD,Caribbean,00000000000000000013,Bahamas
|
161 |
+
7933.235294117641,131000.0,PR,12,PRI,North America,3351827,2. High income: nonOECD,Caribbean,0000000000000000002d,Puerto Rico
|
162 |
+
4435.568627450981,43570.0,TT,12,TTO,North America,1218208,2. High income: nonOECD,Caribbean,000000000000000000ad,Trinidad and Tobago
|
163 |
+
0.0,2173.0,GL,8,GRL,North America,57713,2. High income: nonOECD,Northern America,00000000000000000016,Greenland
|
164 |
+
13.686274509803923,281.8,FK,4,FLK,South America,2931,1. High income: OECD,South America,00000000000000000014,Falkland Is.
|
165 |
+
627136.5803921572,879400.0,AR,15,ARG,South America,44293293,3. Upper middle income,South America,00000000000000000009,Argentina
|
166 |
+
405493.81960784283,436100.0,CL,14,CHL,South America,17789267,3. Upper middle income,South America,0000000000000000000a,Chile
|
167 |
+
40625.01176470591,73250.0,UY,12,URY,South America,3360148,3. Upper middle income,South America,0000000000000000001c,Uruguay
|
168 |
+
6814060.937254902,3081000.0,BR,17,BRA,South America,207353391,3. Upper middle income,South America,0000000000000000001d,Brazil
|
169 |
+
835082.3372549014,410400.0,PE,15,PER,South America,31036656,3. Upper middle income,South America,0000000000000000001f,Peru
|
170 |
+
995206.6784313729,688000.0,CO,15,COL,South America,47698524,3. Upper middle income,South America,00000000000000000020,Colombia
|
171 |
+
695175.7019607839,468600.0,VE,15,VEN,South America,31304016,3. Upper middle income,South America,00000000000000000028,Venezuela
|
172 |
+
142621.38039215692,8547.0,SR,11,SUR,South America,591919,3. Upper middle income,South America,0000000000000000002a,Suriname
|
173 |
+
223966.34509803937,182400.0,EC,14,ECU,South America,16290913,3. Upper middle income,South America,0000000000000000002c,Ecuador
|
174 |
+
764771.3098039209,78350.0,BO,14,BOL,South America,11138234,4. Lower middle income,South America,0000000000000000001e,Bolivia
|
175 |
+
200122.55294117643,6093.0,GY,11,GUY,South America,737718,4. Lower middle income,South America,00000000000000000029,Guyana
|
176 |
+
363318.41568627453,64670.0,PY,13,PRY,South America,6943739,4. Lower middle income,South America,0000000000000000009b,Paraguay
|
177 |
+
0.0,16.0,TF,1,ATF,Seven seas (open ocean),140,2. High income: nonOECD,Seven seas (open ocean),00000000000000000017,Fr. S. Antarctic Lands
|
pages/00_home.py
CHANGED
@@ -1,59 +1,137 @@
|
|
|
|
|
|
1 |
import solara
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
@solara.component
|
5 |
def Page():
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
1. Go to <https://huggingface.co/spaces/giswqs/solara-geemap/tree/main> and duplicate the space to your own space.
|
22 |
-
|
23 |
-

|
24 |
-
|
25 |
-
2. You need to set `EARTHENGINE_TOKEN` in order to use Earth Engine. The token value should be copied from the following file depending on your operating system:
|
26 |
-
|
27 |
-
```text
|
28 |
-
Windows: C:\\Users\\USERNAME\\.config\\earthengine\\credentials
|
29 |
-
Linux: /home/USERNAME/.config/earthengine/credentials
|
30 |
-
MacOS: /Users/USERNAME/.config/earthengine/credentials
|
31 |
-
```
|
32 |
-
|
33 |
-
Simply open the file and copy **ALL** the content to the `EARTHENGINE_TOKEN` environment variable.
|
34 |
-
|
35 |
-

|
36 |
-
|
37 |
-

|
38 |
-
|
39 |
|
40 |
```python
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
-
|
|
|
|
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
solara.Markdown(markdown)
|
|
|
|
1 |
+
import ee
|
2 |
+
import geemap
|
3 |
import solara
|
4 |
|
5 |
+
class Map(geemap.Map):
|
6 |
+
def __init__(self, **kwargs):
|
7 |
+
super().__init__(**kwargs)
|
8 |
+
self.dataset = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
|
9 |
+
self.add_forest_loss_gain_data()
|
10 |
+
self.add_plot_gui()
|
11 |
+
# self.download_data()
|
12 |
+
|
13 |
+
def add_forest_loss_gain_data(self):
|
14 |
+
self.add_basemap("Esri.WorldImagery")
|
15 |
+
treeloss = self.dataset.select(["loss"]).selfMask()
|
16 |
+
treegain = self.dataset.select(["gain"]).selfMask()
|
17 |
+
self.add_layer(treeloss, {"palette": "red"}, "Tree loss")
|
18 |
+
self.add_layer(treegain, {"palette": "yellow"}, "Tree gain")
|
19 |
+
self.add("layer_manager")
|
20 |
+
|
21 |
+
def download_data(self):
|
22 |
+
treecover = self.dataset.select(["treecover2000"])
|
23 |
+
threshold = 10
|
24 |
+
treecover_bin = treecover.gte(threshold).selfMask()
|
25 |
+
countries = ee.FeatureCollection(geemap.examples.get_ee_path("countries"))
|
26 |
+
style = {"color": "#000000ff", "fillColor": "#00000000"}
|
27 |
+
self.add_layer(countries.style(**style), {}, "Countries")
|
28 |
+
geemap.zonal_stats(
|
29 |
+
treecover_bin,
|
30 |
+
countries,
|
31 |
+
"forest_cover.csv",
|
32 |
+
stat_type="SUM",
|
33 |
+
denominator=1e6,
|
34 |
+
scale=1000,
|
35 |
+
)
|
36 |
+
|
37 |
+
class PieChartPlotter:
|
38 |
+
def __init__(self):
|
39 |
+
self.geemap = geemap
|
40 |
+
self.dataset = self.geemap.ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
|
41 |
+
self.zonal_forest_area_by_country()
|
42 |
+
|
43 |
+
def zonal_forest_area_by_country(self):
|
44 |
+
self.geemap.pie_chart(
|
45 |
+
"data/forest_cover.csv", names="NAME", values="sum", max_rows=20, height=400
|
46 |
+
).show()
|
47 |
+
|
48 |
+
class BarChartPlotter:
|
49 |
+
def __init__(self):
|
50 |
+
self.geemap = geemap
|
51 |
+
self.dataset = self.geemap.ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
|
52 |
+
self.zonal_forest_area_by_country()
|
53 |
+
|
54 |
+
def zonal_forest_area_by_country(self):
|
55 |
+
self.geemap.bar_chart(
|
56 |
+
"data/forest_cover.csv", x="NAME", y="sum", max_rows=20, height=400,
|
57 |
+
x_label="Country", y_label="Forest area (km2)",
|
58 |
+
).show()
|
59 |
+
|
60 |
@solara.component
|
61 |
def Page():
|
62 |
+
ee.Initialize()
|
63 |
+
with solara.Column(style={"min-width": "500px"}):
|
64 |
+
Map.element(
|
65 |
+
center=[40, -100],
|
66 |
+
zoom=4,
|
67 |
+
height="600px",
|
68 |
+
)
|
69 |
+
|
70 |
+
with solara.Column(align="center"):
|
71 |
+
markdown = """
|
72 |
+
## Forest cover gain and loss mapping
|
73 |
+
|
74 |
+
### Forest cover mapping
|
75 |
+
|
76 |
+
**For this analysis we will be using [Hansen Global Forest Change v1.11 (2000-2023) dataset](https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2023_v1_11) and geemap. First, we will compute the zonal statistics to identify the countries with the largest forest area, and then plot them. Here the base tree cover imagery is taken from 2000**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
```python
|
79 |
+
dataset = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
|
80 |
+
treecover = dataset.select(["treecover2000"])
|
81 |
+
threshold = 10
|
82 |
+
treecover_bin = treecover.gte(threshold).selfMask()
|
83 |
+
countries = ee.FeatureCollection(geemap.examples.get_ee_path("countries"))
|
84 |
+
style = {"color": "#000000ff", "fillColor": "#00000000"}
|
85 |
+
self.add_layer(countries.style(**style), {}, "Countries")
|
86 |
+
geemap.zonal_stats(
|
87 |
+
treecover_bin,
|
88 |
+
countries,
|
89 |
+
"forest_cover.csv",
|
90 |
+
stat_type="SUM",
|
91 |
+
denominator=1e6,
|
92 |
+
scale=1000,
|
93 |
+
)
|
94 |
+
|
95 |
+
self.geemap.pie_chart(
|
96 |
+
"data/forest_cover.csv", names="NAME", values="sum", max_rows=20, height=400
|
97 |
+
).show()
|
98 |
|
99 |
+
```
|
100 |
+
"""
|
101 |
|
102 |
+
solara.Markdown(markdown)
|
103 |
+
with solara.Column(style={"min-width": "500px"}):
|
104 |
+
pie_chart_plotter = PieChartPlotter()
|
105 |
|
106 |
+
with solara.Column(align="center"):
|
107 |
+
markdown = """
|
108 |
|
109 |
+
**The above give us the percentage overall but not the actual number. Let's plot a bar chart that shows the numbers too**
|
110 |
|
111 |
+
```python
|
112 |
+
self.geemap.bar_chart(
|
113 |
+
"data/forest_cover.csv", x="NAME", y="sum", max_rows=20, height=400,
|
114 |
+
x_label="Country", y_label="Forest area (km2)",
|
115 |
+
).show()
|
116 |
+
```
|
117 |
+
"""
|
118 |
|
119 |
+
solara.Markdown(markdown)
|
120 |
+
with solara.Column(style={"min-width": "500px"}):
|
121 |
+
bar_chart_plotter = BarChartPlotter()
|
122 |
+
|
123 |
+
with solara.Column(align="center"):
|
124 |
+
markdown = """
|
125 |
|
126 |
+
**Now we can calculate the forest loss area by country and plot it**
|
127 |
|
128 |
+
```python
|
129 |
+
treeloss_year = dataset.select(["lossyear"])
|
130 |
+
|
131 |
+
geemap.zonal_stats( treeloss.gt(0), countries, "treeloss.csv", stat_type="SUM", denominator=1e6, scale=1000,)
|
132 |
+
|
133 |
+
geemap.bar_chart( "treeloss.csv", x="NAME", y="sum", max_rows=20, x_label="Country", y_label="Forest loss area (km2)",).show()
|
134 |
+
```
|
135 |
+
"""
|
136 |
solara.Markdown(markdown)
|
137 |
+
|
pages/04_split_map.py
CHANGED
@@ -47,9 +47,18 @@ class Map(geemap.Map):
|
|
47 |
|
48 |
@solara.component
|
49 |
def Page():
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
@solara.component
|
49 |
def Page():
|
50 |
+
with solara.Column(style={"min-width": "500px"}):
|
51 |
+
Map.element(
|
52 |
+
center=[40, -100],
|
53 |
+
zoom=4,
|
54 |
+
height="600px",
|
55 |
+
)
|
56 |
+
|
57 |
+
with solara.Column(align="center"):
|
58 |
+
markdown = """
|
59 |
+
## Land cover change mapping using split-panel map
|
60 |
+
|
61 |
+
**For this analysis we will be using [NLCD 2019: USGS National Land Cover Database, 2019 release dataset](https://developers.google.com/earth-engine/datasets/catalog/USGS_NLCD_RELEASES_2019_REL_NLCD) and geemap.**
|
62 |
+
"""
|
63 |
+
|
64 |
+
solara.Markdown(markdown)
|