import ee import geemap import solara class Map(geemap.Map): def __init__(self, **kwargs): super().__init__(**kwargs) self.add_ee_data() self.add("layer_manager") self.add("inspector") def add_ee_data(self): # Add Earth Engine dataset dem = ee.Image('USGS/SRTMGL1_003') landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select( ['B1', 'B2', 'B3', 'B4', 'B5', 'B7'] ) states = ee.FeatureCollection("TIGER/2018/States") # Set visualization parameters. vis_params = { 'min': 0, 'max': 4000, 'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'], } # Add Earth Engine layers to Map self.addLayer( landsat7, {'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200, 'gamma': 2.0}, 'Landsat 7', True, ) self.addLayer(dem, vis_params, 'SRTM DEM', True, 1) self.addLayer(states, {}, "US States") @solara.component def Page(): with solara.Column(align="center"): markdown = """ ### Landsat Inspection **Here, we are using [NASA SRTM Digital Elevation 30m](https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003) for digital elevation and [LANDSAT_LE7_TOA_5YEAR](https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE7_TOA_5YEAR) that contains 5 year composites from all Landsat 7 images in the specified composite period with [TIGER: US Census States 2018](https://developers.google.com/earth-engine/datasets/catalog/TIGER_2018_States) for state geometry clipping** """ solara.Markdown(markdown) with solara.Column(style={"min-width": "500px"}): Map.element( center=[40, -100], zoom=4, height="600px", )