waste-detection / app.py
iamsuman's picture
remove tomatoes video file
4b5873a
raw
history blame
5.04 kB
import gradio as gr
import cv2
import requests
import os
from ultralytics import YOLO
file_urls = [
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/riped_tomato_93.jpeg?download=true',
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/unriped_tomato_18.jpeg?download=true',
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/tomatoes.mp4?download=true',
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
if 'mp4' in file_urls[i]:
download_file(
file_urls[i],
f"video.mp4"
)
else:
download_file(
file_urls[i],
f"image_{i}.jpg"
)
model = YOLO('best.pt')
path = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
# Print the detected objects' information (class, coordinates, and probability)
box = results[0].boxes
names = model.model.names
boxes = results.boxes
for box, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
x1, y1, x2, y2 = map(int, box)
class_name = names[int(cls)]
print(class_name, "class_name", class_name.lower() == 'ripe')
if class_name.lower() == 'ripe':
color = (0, 0, 255) # Red for ripe
else:
color = (0, 255, 0) # Green for unripe
# Draw rectangle around object
cv2.rectangle(
image,
(x1, y1),
(x2, y2),
color=color,
thickness=2,
lineType=cv2.LINE_AA
)
# Display class label on top of rectangle
label = f"{class_name.capitalize()}: {conf:.2f}"
cv2.putText(image, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, # Use the same color as the rectangle
2,
cv2.LINE_AA)
# Convert image to RGB (Gradio expects RGB format)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Ripe And Unripe Tomatoes Detection",
examples=path,
cache_examples=False,
)
def show_preds_video(video_path):
cap = cv2.VideoCapture(video_path)
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
boxes = results.boxes
confidences = boxes.conf
classes = boxes.cls
names = model.model.names
for box, conf, cls in zip(boxes.xyxy, confidences, classes):
x1, y1, x2, y2 = map(int, box)
# Determine color based on class
class_name = names[int(cls)]
if class_name.lower() == 'ripe':
color = (0, 0, 255) # Red for ripe
else:
color = (0, 255, 0) # Green for unripe
# Draw rectangle around object
cv2.rectangle(
frame_copy,
(x1, y1),
(x2, y2),
color=color,
thickness=2,
lineType=cv2.LINE_AA
)
# Display class label on top of rectangle with capitalized class name
label = f"{class_name.capitalize()}: {conf:.2f}"
cv2.putText(
frame_copy,
label,
(x1, y1 - 10), # Position slightly above the top of the rectangle
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
color, # Use the same color as the rectangle
1,
cv2.LINE_AA
)
# Convert frame to RGB (Gradio expects RGB format)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
else:
break
cap.release()
inputs_video = [
gr.components.Video(label="Input Video"),
]
outputs_video = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title="Ripe And Unripe Tomatoes Detection",
examples=video_path,
cache_examples=False,
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image inference', 'Video inference']
).queue().launch()