Spaces:
Paused
Paused
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
import random | |
from ultralytics import YOLO | |
# Define class names based on YOLO labels | |
class_names = {0: 'AluCan', 1: 'Glass', 2: 'PET', 3: 'HDPEM'} | |
# Generate random colors for each class | |
class_colors = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in class_names} | |
# File URLs for sample images and video | |
file_urls = [ | |
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/mix2.jpg?download=true', | |
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/mix11.jpg?download=true', | |
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/sample_waste.mp4?download=true', | |
] | |
# Function to download files (always overwrites existing ones) | |
def download_file(url, save_name): | |
print(f"Downloading from: {url}") # Log the URL | |
try: | |
response = requests.get(url, stream=True) | |
response.raise_for_status() # Check for HTTP errors | |
with open(save_name, 'wb') as file: | |
for chunk in response.iter_content(1024): | |
file.write(chunk) | |
print(f"Downloaded and overwritten: {save_name}") | |
except requests.exceptions.RequestException as e: | |
print(f"Error downloading {url}: {e}") | |
# Download images and video | |
for i, url in enumerate(file_urls): | |
print(i, url) | |
if 'mp4' in file_urls[i]: | |
download_file(file_urls[i], f"video.mp4") | |
else: | |
download_file(file_urls[i], f"image_{i}.jpg") | |
# Load YOLO model | |
model = YOLO('best.pt') | |
# Sample paths | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
video_path = [['video.mp4']] | |
# Function to process and display predictions on images | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
boxes = results.boxes | |
names = model.model.names | |
for box, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls): | |
x1, y1, x2, y2 = map(int, box) | |
class_name = names[int(cls)] | |
color = class_colors.get(int(cls), (255, 255, 255)) # Default to white if class is unknown | |
# Draw bounding box | |
cv2.rectangle(image, (x1, y1), (x2, y2), color=color, thickness=2, lineType=cv2.LINE_AA) | |
# Display class label | |
label = f"{class_name.capitalize()}: {conf:.2f}" | |
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2, cv2.LINE_AA) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Function to process and display predictions on video | |
def show_preds_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
boxes = results.boxes | |
confidences = boxes.conf | |
classes = boxes.cls | |
names = model.model.names | |
for box, conf, cls in zip(boxes.xyxy, confidences, classes): | |
x1, y1, x2, y2 = map(int, box) | |
class_name = names[int(cls)] | |
color = class_colors.get(int(cls), (255, 255, 255)) # Default to white if class is unknown | |
# Draw bounding box | |
cv2.rectangle(frame_copy, (x1, y1), (x2, y2), color=color, thickness=2, lineType=cv2.LINE_AA) | |
# Display class label | |
label = f"{class_name.capitalize()}: {conf:.2f}" | |
cv2.putText(frame_copy, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1, cv2.LINE_AA) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
cap.release() | |
# Gradio Image Interface | |
inputs_image = [gr.Image(type="filepath", label="Input Image")] | |
outputs_image = [gr.Image(type="numpy", label="Output Image")] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Waste Detection", | |
examples=path, | |
cache_examples=False, | |
) | |
# Gradio Video Interface | |
inputs_video = [gr.Video(label="Input Video")] | |
outputs_video = [gr.Image(type="numpy", label="Output Image")] | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Waste Detection", | |
examples=video_path, | |
cache_examples=False, | |
) | |
# Launch Gradio App | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image Inference', 'Video Inference'] | |
).queue().launch() | |