waste-detection / app.py
iamsuman's picture
added new mixed images for testing
970733c
raw
history blame
4.55 kB
import gradio as gr
import cv2
import requests
import os
import random
from ultralytics import YOLO
# Define class names based on YOLO labels
class_names = {0: 'AluCan', 1: 'Glass', 2: 'PET', 3: 'HDPEM'}
# Generate random colors for each class
class_colors = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in class_names}
# File URLs for sample images and video
file_urls = [
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/mix2.jpg?download=true',
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/mix11.jpg?download=true',
'https://huggingface.co/spaces/iamsuman/waste-detection/resolve/main/samples/sample_waste.mp4?download=true',
]
# Function to download files (always overwrites existing ones)
def download_file(url, save_name):
print(f"Downloading from: {url}") # Log the URL
try:
response = requests.get(url, stream=True)
response.raise_for_status() # Check for HTTP errors
with open(save_name, 'wb') as file:
for chunk in response.iter_content(1024):
file.write(chunk)
print(f"Downloaded and overwritten: {save_name}")
except requests.exceptions.RequestException as e:
print(f"Error downloading {url}: {e}")
# Download images and video
for i, url in enumerate(file_urls):
print(i, url)
if 'mp4' in file_urls[i]:
download_file(file_urls[i], f"video.mp4")
else:
download_file(file_urls[i], f"image_{i}.jpg")
# Load YOLO model
model = YOLO('best.pt')
# Sample paths
path = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]
# Function to process and display predictions on images
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
boxes = results.boxes
names = model.model.names
for box, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
x1, y1, x2, y2 = map(int, box)
class_name = names[int(cls)]
color = class_colors.get(int(cls), (255, 255, 255)) # Default to white if class is unknown
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), color=color, thickness=2, lineType=cv2.LINE_AA)
# Display class label
label = f"{class_name.capitalize()}: {conf:.2f}"
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2, cv2.LINE_AA)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Function to process and display predictions on video
def show_preds_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
boxes = results.boxes
confidences = boxes.conf
classes = boxes.cls
names = model.model.names
for box, conf, cls in zip(boxes.xyxy, confidences, classes):
x1, y1, x2, y2 = map(int, box)
class_name = names[int(cls)]
color = class_colors.get(int(cls), (255, 255, 255)) # Default to white if class is unknown
# Draw bounding box
cv2.rectangle(frame_copy, (x1, y1), (x2, y2), color=color, thickness=2, lineType=cv2.LINE_AA)
# Display class label
label = f"{class_name.capitalize()}: {conf:.2f}"
cv2.putText(frame_copy, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1, cv2.LINE_AA)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
cap.release()
# Gradio Image Interface
inputs_image = [gr.Image(type="filepath", label="Input Image")]
outputs_image = [gr.Image(type="numpy", label="Output Image")]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Waste Detection",
examples=path,
cache_examples=False,
)
# Gradio Video Interface
inputs_video = [gr.Video(label="Input Video")]
outputs_video = [gr.Image(type="numpy", label="Output Image")]
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title="Waste Detection",
examples=video_path,
cache_examples=False,
)
# Launch Gradio App
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image Inference', 'Video Inference']
).queue().launch()