Spaces:
Paused
Paused
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralytics import YOLO | |
file_urls = [ | |
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/riped_tomato_93.jpeg?download=true', | |
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/unriped_tomato_18.jpeg?download=true', | |
'https://huggingface.co/spaces/iamsuman/ripe-and-unripe-tomatoes-detection/resolve/main/samples/tomatoes.mp4?download=true', | |
] | |
def download_file(url, save_name): | |
url = url | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
if 'mp4' in file_urls[i]: | |
download_file( | |
file_urls[i], | |
f"video.mp4" | |
) | |
else: | |
download_file( | |
file_urls[i], | |
f"image_{i}.jpg" | |
) | |
model = YOLO('best.pt') | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
video_path = [['video.mp4']] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
# Print the detected objects' information (class, coordinates, and probability) | |
box = results[0].boxes | |
names = model.model.names | |
boxes = results.boxes | |
for box, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls): | |
x1, y1, x2, y2 = map(int, box) | |
class_name = names[int(cls)] | |
print(class_name, "class_name", class_name.lower() == 'ripe') | |
if class_name.lower() == 'ripe': | |
color = (0, 0, 255) # Red for ripe | |
else: | |
color = (0, 255, 0) # Green for unripe | |
# Draw rectangle around object | |
cv2.rectangle( | |
image, | |
(x1, y1), | |
(x2, y2), | |
color=color, | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
# Display class label on top of rectangle | |
label = f"{class_name.capitalize()}: {conf:.2f}" | |
cv2.putText(image, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, # Use the same color as the rectangle | |
2, | |
cv2.LINE_AA) | |
# Convert image to RGB (Gradio expects RGB format) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Ripe And Unripe Tomatoes Detection", | |
examples=path, | |
cache_examples=False, | |
) | |
def show_preds_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret: | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
boxes = results.boxes | |
confidences = boxes.conf | |
classes = boxes.cls | |
names = model.model.names | |
for box, conf, cls in zip(boxes.xyxy, confidences, classes): | |
x1, y1, x2, y2 = map(int, box) | |
# Determine color based on class | |
class_name = names[int(cls)] | |
if class_name.lower() == 'ripe': | |
color = (0, 0, 255) # Red for ripe | |
else: | |
color = (0, 255, 0) # Green for unripe | |
# Draw rectangle around object | |
cv2.rectangle( | |
frame_copy, | |
(x1, y1), | |
(x2, y2), | |
color=color, | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
# Display class label on top of rectangle with capitalized class name | |
label = f"{class_name.capitalize()}: {conf:.2f}" | |
cv2.putText( | |
frame_copy, | |
label, | |
(x1, y1 - 10), # Position slightly above the top of the rectangle | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
color, # Use the same color as the rectangle | |
1, | |
cv2.LINE_AA | |
) | |
# Convert frame to RGB (Gradio expects RGB format) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
else: | |
break | |
cap.release() | |
inputs_video = [ | |
gr.components.Video(label="Input Video"), | |
] | |
outputs_video = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Ripe And Unripe Tomatoes Detection", | |
examples=video_path, | |
cache_examples=False, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() |