Spaces:
Runtime error
Runtime error
replicate demo
Browse files- README.md +1 -1
- cog.yaml +25 -0
- predict.py +188 -0
README.md
CHANGED
|
@@ -7,7 +7,7 @@
|
|
| 7 |
[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
|
| 8 |
|
| 9 |
<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> 
|
| 10 |
-
|
| 11 |
|
| 12 |
[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
|
| 13 |
|
|
|
|
| 7 |
[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
|
| 8 |
|
| 9 |
<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> 
|
| 10 |
+
[](https://replicate.com/cjwbw/codeformer)
|
| 11 |
|
| 12 |
[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
|
| 13 |
|
cog.yaml
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
build:
|
| 2 |
+
gpu: true
|
| 3 |
+
cuda: "11.3"
|
| 4 |
+
python_version: "3.8"
|
| 5 |
+
system_packages:
|
| 6 |
+
- "libgl1-mesa-glx"
|
| 7 |
+
- "libglib2.0-0"
|
| 8 |
+
python_packages:
|
| 9 |
+
- "ipython==8.4.0"
|
| 10 |
+
- "future==0.18.2"
|
| 11 |
+
- "lmdb==1.3.0"
|
| 12 |
+
- "scikit-image==0.19.3"
|
| 13 |
+
- "torch==1.11.0 --extra-index-url=https://download.pytorch.org/whl/cu113"
|
| 14 |
+
- "torchvision==0.12.0 --extra-index-url=https://download.pytorch.org/whl/cu113"
|
| 15 |
+
- "scipy==1.9.0"
|
| 16 |
+
- "gdown==4.5.1"
|
| 17 |
+
- "pyyaml==6.0"
|
| 18 |
+
- "tb-nightly==2.11.0a20220906"
|
| 19 |
+
- "tqdm==4.64.1"
|
| 20 |
+
- "yapf==0.32.0"
|
| 21 |
+
- "lpips==0.1.4"
|
| 22 |
+
- "Pillow==9.2.0"
|
| 23 |
+
- "opencv-python==4.6.0.66"
|
| 24 |
+
|
| 25 |
+
predict: "predict.py:Predictor"
|
predict.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
download checkpoints to ./weights beforehand
|
| 3 |
+
python scripts/download_pretrained_models.py facelib
|
| 4 |
+
python scripts/download_pretrained_models.py CodeFormer
|
| 5 |
+
wget 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import tempfile
|
| 9 |
+
import cv2
|
| 10 |
+
import torch
|
| 11 |
+
from torchvision.transforms.functional import normalize
|
| 12 |
+
from cog import BasePredictor, Input, Path
|
| 13 |
+
|
| 14 |
+
from basicsr.utils import imwrite, img2tensor, tensor2img
|
| 15 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 16 |
+
from basicsr.utils.realesrgan_utils import RealESRGANer
|
| 17 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 18 |
+
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class Predictor(BasePredictor):
|
| 22 |
+
def setup(self):
|
| 23 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
| 24 |
+
self.device = "cuda:0"
|
| 25 |
+
self.bg_upsampler = set_realesrgan()
|
| 26 |
+
self.net = ARCH_REGISTRY.get("CodeFormer")(
|
| 27 |
+
dim_embd=512,
|
| 28 |
+
codebook_size=1024,
|
| 29 |
+
n_head=8,
|
| 30 |
+
n_layers=9,
|
| 31 |
+
connect_list=["32", "64", "128", "256"],
|
| 32 |
+
).to(self.device)
|
| 33 |
+
ckpt_path = "weights/CodeFormer/codeformer.pth"
|
| 34 |
+
checkpoint = torch.load(ckpt_path)[
|
| 35 |
+
"params_ema"
|
| 36 |
+
] # update file permission if cannot load
|
| 37 |
+
self.net.load_state_dict(checkpoint)
|
| 38 |
+
self.net.eval()
|
| 39 |
+
|
| 40 |
+
def predict(
|
| 41 |
+
self,
|
| 42 |
+
image: Path = Input(description="Input image"),
|
| 43 |
+
codeformer_fidelity: float = Input(
|
| 44 |
+
default=0.5,
|
| 45 |
+
ge=0,
|
| 46 |
+
le=1,
|
| 47 |
+
description="Balance the quality (lower number) and fidelity (higher number).",
|
| 48 |
+
),
|
| 49 |
+
background_enhance: bool = Input(
|
| 50 |
+
description="Enhance background image with Real-ESRGAN", default=True
|
| 51 |
+
),
|
| 52 |
+
face_upsample: bool = Input(
|
| 53 |
+
description="Upsample restored faces for high-resolution AI-created images",
|
| 54 |
+
default=True,
|
| 55 |
+
),
|
| 56 |
+
upscale: int = Input(
|
| 57 |
+
description="The final upsampling scale of the image",
|
| 58 |
+
default=2,
|
| 59 |
+
),
|
| 60 |
+
) -> Path:
|
| 61 |
+
"""Run a single prediction on the model"""
|
| 62 |
+
|
| 63 |
+
# take the default setting for the demo
|
| 64 |
+
has_aligned = False
|
| 65 |
+
only_center_face = False
|
| 66 |
+
draw_box = False
|
| 67 |
+
detection_model = "retinaface_resnet50"
|
| 68 |
+
|
| 69 |
+
self.face_helper = FaceRestoreHelper(
|
| 70 |
+
upscale,
|
| 71 |
+
face_size=512,
|
| 72 |
+
crop_ratio=(1, 1),
|
| 73 |
+
det_model=detection_model,
|
| 74 |
+
save_ext="png",
|
| 75 |
+
use_parse=True,
|
| 76 |
+
device=self.device,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
bg_upsampler = self.bg_upsampler if background_enhance else None
|
| 80 |
+
face_upsampler = self.bg_upsampler if face_upsample else None
|
| 81 |
+
|
| 82 |
+
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
| 83 |
+
|
| 84 |
+
if has_aligned:
|
| 85 |
+
# the input faces are already cropped and aligned
|
| 86 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
| 87 |
+
self.face_helper.cropped_faces = [img]
|
| 88 |
+
else:
|
| 89 |
+
self.face_helper.read_image(img)
|
| 90 |
+
# get face landmarks for each face
|
| 91 |
+
num_det_faces = self.face_helper.get_face_landmarks_5(
|
| 92 |
+
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
| 93 |
+
)
|
| 94 |
+
print(f"\tdetect {num_det_faces} faces")
|
| 95 |
+
# align and warp each face
|
| 96 |
+
self.face_helper.align_warp_face()
|
| 97 |
+
|
| 98 |
+
# face restoration for each cropped face
|
| 99 |
+
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
|
| 100 |
+
# prepare data
|
| 101 |
+
cropped_face_t = img2tensor(
|
| 102 |
+
cropped_face / 255.0, bgr2rgb=True, float32=True
|
| 103 |
+
)
|
| 104 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
| 105 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
output = self.net(
|
| 110 |
+
cropped_face_t, w=codeformer_fidelity, adain=True
|
| 111 |
+
)[0]
|
| 112 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
| 113 |
+
del output
|
| 114 |
+
torch.cuda.empty_cache()
|
| 115 |
+
except Exception as error:
|
| 116 |
+
print(f"\tFailed inference for CodeFormer: {error}")
|
| 117 |
+
restored_face = tensor2img(
|
| 118 |
+
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
restored_face = restored_face.astype("uint8")
|
| 122 |
+
self.face_helper.add_restored_face(restored_face)
|
| 123 |
+
|
| 124 |
+
# paste_back
|
| 125 |
+
if not has_aligned:
|
| 126 |
+
# upsample the background
|
| 127 |
+
if bg_upsampler is not None:
|
| 128 |
+
# Now only support RealESRGAN for upsampling background
|
| 129 |
+
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
| 130 |
+
else:
|
| 131 |
+
bg_img = None
|
| 132 |
+
self.face_helper.get_inverse_affine(None)
|
| 133 |
+
# paste each restored face to the input image
|
| 134 |
+
if face_upsample and face_upsampler is not None:
|
| 135 |
+
restored_img = self.face_helper.paste_faces_to_input_image(
|
| 136 |
+
upsample_img=bg_img,
|
| 137 |
+
draw_box=draw_box,
|
| 138 |
+
face_upsampler=face_upsampler,
|
| 139 |
+
)
|
| 140 |
+
else:
|
| 141 |
+
restored_img = self.face_helper.paste_faces_to_input_image(
|
| 142 |
+
upsample_img=bg_img, draw_box=draw_box
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# save restored img
|
| 146 |
+
out_path = Path(tempfile.mkdtemp()) / "output.png"
|
| 147 |
+
|
| 148 |
+
if not has_aligned and restored_img is not None:
|
| 149 |
+
imwrite(restored_img, str(out_path))
|
| 150 |
+
|
| 151 |
+
return out_path
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def imread(img_path):
|
| 155 |
+
img = cv2.imread(img_path)
|
| 156 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 157 |
+
return img
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def set_realesrgan():
|
| 161 |
+
if not torch.cuda.is_available(): # CPU
|
| 162 |
+
import warnings
|
| 163 |
+
|
| 164 |
+
warnings.warn(
|
| 165 |
+
"The unoptimized RealESRGAN is slow on CPU. We do not use it. "
|
| 166 |
+
"If you really want to use it, please modify the corresponding codes.",
|
| 167 |
+
category=RuntimeWarning,
|
| 168 |
+
)
|
| 169 |
+
bg_upsampler = None
|
| 170 |
+
else:
|
| 171 |
+
model = RRDBNet(
|
| 172 |
+
num_in_ch=3,
|
| 173 |
+
num_out_ch=3,
|
| 174 |
+
num_feat=64,
|
| 175 |
+
num_block=23,
|
| 176 |
+
num_grow_ch=32,
|
| 177 |
+
scale=2,
|
| 178 |
+
)
|
| 179 |
+
bg_upsampler = RealESRGANer(
|
| 180 |
+
scale=2,
|
| 181 |
+
model_path="./weights/RealESRGAN_x2plus.pth",
|
| 182 |
+
model=model,
|
| 183 |
+
tile=400,
|
| 184 |
+
tile_pad=40,
|
| 185 |
+
pre_pad=0,
|
| 186 |
+
half=True,
|
| 187 |
+
)
|
| 188 |
+
return bg_upsampler
|