Spaces:
Runtime error
Runtime error
add sound back into enhanced video (#61)
Browse files- README.md +3 -4
- basicsr/utils/video_util.py +119 -0
- facelib/utils/misc.py +2 -2
- inference_codeformer.py +16 -11
- requirements.txt +1 -3
README.md
CHANGED
|
@@ -81,12 +81,12 @@ python basicsr/setup.py develop
|
|
| 81 |
### Quick Inference
|
| 82 |
|
| 83 |
#### Download Pre-trained Models:
|
| 84 |
-
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by
|
| 85 |
```
|
| 86 |
python scripts/download_pretrained_models.py facelib
|
| 87 |
```
|
| 88 |
|
| 89 |
-
Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by
|
| 90 |
```
|
| 91 |
python scripts/download_pretrained_models.py CodeFormer
|
| 92 |
```
|
|
@@ -115,8 +115,7 @@ python inference_codeformer.py -w 0.7 --input_path [image folder/image path]
|
|
| 115 |
:clapper: Video Enhancement
|
| 116 |
```
|
| 117 |
# For video clips
|
| 118 |
-
|
| 119 |
-
python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path] --save_video_fps 24
|
| 120 |
```
|
| 121 |
|
| 122 |
|
|
|
|
| 81 |
### Quick Inference
|
| 82 |
|
| 83 |
#### Download Pre-trained Models:
|
| 84 |
+
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command.
|
| 85 |
```
|
| 86 |
python scripts/download_pretrained_models.py facelib
|
| 87 |
```
|
| 88 |
|
| 89 |
+
Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command.
|
| 90 |
```
|
| 91 |
python scripts/download_pretrained_models.py CodeFormer
|
| 92 |
```
|
|
|
|
| 115 |
:clapper: Video Enhancement
|
| 116 |
```
|
| 117 |
# For video clips
|
| 118 |
+
python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path]
|
|
|
|
| 119 |
```
|
| 120 |
|
| 121 |
|
basicsr/utils/video_util.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
The code is modified from the Real-ESRGAN:
|
| 3 |
+
https://github.com/xinntao/Real-ESRGAN/blob/master/inference_realesrgan_video.py
|
| 4 |
+
|
| 5 |
+
'''
|
| 6 |
+
import cv2
|
| 7 |
+
import sys
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
import ffmpeg
|
| 12 |
+
except ImportError:
|
| 13 |
+
import pip
|
| 14 |
+
pip.main(['install', '--user', 'ffmpeg-python'])
|
| 15 |
+
import ffmpeg
|
| 16 |
+
|
| 17 |
+
def get_video_meta_info(video_path):
|
| 18 |
+
ret = {}
|
| 19 |
+
probe = ffmpeg.probe(video_path)
|
| 20 |
+
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
| 21 |
+
has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
|
| 22 |
+
ret['width'] = video_streams[0]['width']
|
| 23 |
+
ret['height'] = video_streams[0]['height']
|
| 24 |
+
ret['fps'] = eval(video_streams[0]['avg_frame_rate'])
|
| 25 |
+
ret['audio'] = ffmpeg.input(video_path).audio if has_audio else None
|
| 26 |
+
ret['nb_frames'] = int(video_streams[0]['nb_frames'])
|
| 27 |
+
return ret
|
| 28 |
+
|
| 29 |
+
class VideoReader:
|
| 30 |
+
def __init__(self, video_path):
|
| 31 |
+
self.paths = [] # for image&folder type
|
| 32 |
+
self.audio = None
|
| 33 |
+
self.stream_reader = (
|
| 34 |
+
ffmpeg.input(video_path).output('pipe:', format='rawvideo', pix_fmt='bgr24',
|
| 35 |
+
loglevel='error').run_async(
|
| 36 |
+
pipe_stdin=True, pipe_stdout=True, cmd='ffmpeg'))
|
| 37 |
+
meta = get_video_meta_info(video_path)
|
| 38 |
+
self.width = meta['width']
|
| 39 |
+
self.height = meta['height']
|
| 40 |
+
self.input_fps = meta['fps']
|
| 41 |
+
self.audio = meta['audio']
|
| 42 |
+
self.nb_frames = meta['nb_frames']
|
| 43 |
+
|
| 44 |
+
self.idx = 0
|
| 45 |
+
|
| 46 |
+
def get_resolution(self):
|
| 47 |
+
return self.height, self.width
|
| 48 |
+
|
| 49 |
+
def get_fps(self):
|
| 50 |
+
if self.input_fps is not None:
|
| 51 |
+
return self.input_fps
|
| 52 |
+
return 24
|
| 53 |
+
|
| 54 |
+
def get_audio(self):
|
| 55 |
+
return self.audio
|
| 56 |
+
|
| 57 |
+
def __len__(self):
|
| 58 |
+
return self.nb_frames
|
| 59 |
+
|
| 60 |
+
def get_frame_from_stream(self):
|
| 61 |
+
img_bytes = self.stream_reader.stdout.read(self.width * self.height * 3) # 3 bytes for one pixel
|
| 62 |
+
if not img_bytes:
|
| 63 |
+
return None
|
| 64 |
+
img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
|
| 65 |
+
return img
|
| 66 |
+
|
| 67 |
+
def get_frame_from_list(self):
|
| 68 |
+
if self.idx >= self.nb_frames:
|
| 69 |
+
return None
|
| 70 |
+
img = cv2.imread(self.paths[self.idx])
|
| 71 |
+
self.idx += 1
|
| 72 |
+
return img
|
| 73 |
+
|
| 74 |
+
def get_frame(self):
|
| 75 |
+
return self.get_frame_from_stream()
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def close(self):
|
| 79 |
+
self.stream_reader.stdin.close()
|
| 80 |
+
self.stream_reader.wait()
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class VideoWriter:
|
| 84 |
+
def __init__(self, video_save_path, height, width, fps, audio):
|
| 85 |
+
if height > 2160:
|
| 86 |
+
print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
|
| 87 |
+
'We highly recommend to decrease the outscale(aka, -s).')
|
| 88 |
+
if audio is not None:
|
| 89 |
+
self.stream_writer = (
|
| 90 |
+
ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{width}x{height}',
|
| 91 |
+
framerate=fps).output(
|
| 92 |
+
audio,
|
| 93 |
+
video_save_path,
|
| 94 |
+
pix_fmt='yuv420p',
|
| 95 |
+
vcodec='libx264',
|
| 96 |
+
loglevel='error',
|
| 97 |
+
acodec='copy').overwrite_output().run_async(
|
| 98 |
+
pipe_stdin=True, pipe_stdout=True, cmd='ffmpeg'))
|
| 99 |
+
else:
|
| 100 |
+
self.stream_writer = (
|
| 101 |
+
ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{width}x{height}',
|
| 102 |
+
framerate=fps).output(
|
| 103 |
+
video_save_path, pix_fmt='yuv420p', vcodec='libx264',
|
| 104 |
+
loglevel='error').overwrite_output().run_async(
|
| 105 |
+
pipe_stdin=True, pipe_stdout=True, cmd='ffmpeg'))
|
| 106 |
+
|
| 107 |
+
def write_frame(self, frame):
|
| 108 |
+
try:
|
| 109 |
+
frame = frame.astype(np.uint8).tobytes()
|
| 110 |
+
self.stream_writer.stdin.write(frame)
|
| 111 |
+
except BrokenPipeError:
|
| 112 |
+
print('Please re-install ffmpeg and libx264 by running\n',
|
| 113 |
+
'\t$ conda install -c conda-forge ffmpeg\n',
|
| 114 |
+
'\t$ conda install -c conda-forge x264')
|
| 115 |
+
sys.exit(0)
|
| 116 |
+
|
| 117 |
+
def close(self):
|
| 118 |
+
self.stream_writer.stdin.close()
|
| 119 |
+
self.stream_writer.wait()
|
facelib/utils/misc.py
CHANGED
|
@@ -7,13 +7,13 @@ import torch
|
|
| 7 |
from torch.hub import download_url_to_file, get_dir
|
| 8 |
from urllib.parse import urlparse
|
| 9 |
# from basicsr.utils.download_util import download_file_from_google_drive
|
| 10 |
-
import gdown
|
| 11 |
-
|
| 12 |
|
| 13 |
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
| 14 |
|
| 15 |
|
| 16 |
def download_pretrained_models(file_ids, save_path_root):
|
|
|
|
|
|
|
| 17 |
os.makedirs(save_path_root, exist_ok=True)
|
| 18 |
|
| 19 |
for file_name, file_id in file_ids.items():
|
|
|
|
| 7 |
from torch.hub import download_url_to_file, get_dir
|
| 8 |
from urllib.parse import urlparse
|
| 9 |
# from basicsr.utils.download_util import download_file_from_google_drive
|
|
|
|
|
|
|
| 10 |
|
| 11 |
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
| 12 |
|
| 13 |
|
| 14 |
def download_pretrained_models(file_ids, save_path_root):
|
| 15 |
+
import gdown
|
| 16 |
+
|
| 17 |
os.makedirs(save_path_root, exist_ok=True)
|
| 18 |
|
| 19 |
for file_name, file_id in file_ids.items():
|
inference_codeformer.py
CHANGED
|
@@ -72,7 +72,7 @@ if __name__ == '__main__':
|
|
| 72 |
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
|
| 73 |
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
|
| 74 |
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
|
| 75 |
-
parser.add_argument('--save_video_fps', type=
|
| 76 |
|
| 77 |
args = parser.parse_args()
|
| 78 |
|
|
@@ -83,15 +83,19 @@ if __name__ == '__main__':
|
|
| 83 |
input_img_list = [args.input_path]
|
| 84 |
result_root = f'results/test_img_{w}'
|
| 85 |
elif args.input_path.endswith(('mp4', 'mov', 'avi')): # input video path
|
|
|
|
| 86 |
input_img_list = []
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
while
|
| 90 |
input_img_list.append(image)
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
video_name = os.path.basename(args.input_path)[:-4]
|
| 94 |
result_root = f'results/{video_name}_{w}'
|
|
|
|
|
|
|
| 95 |
else: # input img folder
|
| 96 |
if args.input_path.endswith('/'): # solve when path ends with /
|
| 97 |
args.input_path = args.input_path[:-1]
|
|
@@ -241,6 +245,7 @@ if __name__ == '__main__':
|
|
| 241 |
|
| 242 |
# save enhanced video
|
| 243 |
if input_video:
|
|
|
|
| 244 |
# load images
|
| 245 |
video_frames = []
|
| 246 |
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
|
|
@@ -248,14 +253,14 @@ if __name__ == '__main__':
|
|
| 248 |
img = cv2.imread(img_path)
|
| 249 |
video_frames.append(img)
|
| 250 |
# write images to video
|
| 251 |
-
|
| 252 |
if args.suffix is not None:
|
| 253 |
video_name = f'{video_name}_{args.suffix}.png'
|
| 254 |
save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
|
| 255 |
-
|
| 256 |
-
|
| 257 |
for f in video_frames:
|
| 258 |
-
|
| 259 |
-
|
| 260 |
|
| 261 |
print(f'\nAll results are saved in {result_root}')
|
|
|
|
| 72 |
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
|
| 73 |
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
|
| 74 |
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
|
| 75 |
+
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
|
| 76 |
|
| 77 |
args = parser.parse_args()
|
| 78 |
|
|
|
|
| 83 |
input_img_list = [args.input_path]
|
| 84 |
result_root = f'results/test_img_{w}'
|
| 85 |
elif args.input_path.endswith(('mp4', 'mov', 'avi')): # input video path
|
| 86 |
+
from basicsr.utils.video_util import VideoReader, VideoWriter
|
| 87 |
input_img_list = []
|
| 88 |
+
vidreader = VideoReader(args.input_path)
|
| 89 |
+
image = vidreader.get_frame()
|
| 90 |
+
while image is not None:
|
| 91 |
input_img_list.append(image)
|
| 92 |
+
image = vidreader.get_frame()
|
| 93 |
+
audio = vidreader.get_audio()
|
| 94 |
+
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
|
| 95 |
video_name = os.path.basename(args.input_path)[:-4]
|
| 96 |
result_root = f'results/{video_name}_{w}'
|
| 97 |
+
input_video = True
|
| 98 |
+
vidreader.close()
|
| 99 |
else: # input img folder
|
| 100 |
if args.input_path.endswith('/'): # solve when path ends with /
|
| 101 |
args.input_path = args.input_path[:-1]
|
|
|
|
| 245 |
|
| 246 |
# save enhanced video
|
| 247 |
if input_video:
|
| 248 |
+
print('Video Saving...')
|
| 249 |
# load images
|
| 250 |
video_frames = []
|
| 251 |
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
|
|
|
|
| 253 |
img = cv2.imread(img_path)
|
| 254 |
video_frames.append(img)
|
| 255 |
# write images to video
|
| 256 |
+
height, width = video_frames[0].shape[:2]
|
| 257 |
if args.suffix is not None:
|
| 258 |
video_name = f'{video_name}_{args.suffix}.png'
|
| 259 |
save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
|
| 260 |
+
vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
|
| 261 |
+
|
| 262 |
for f in video_frames:
|
| 263 |
+
vidwriter.write_frame(f)
|
| 264 |
+
vidwriter.close()
|
| 265 |
|
| 266 |
print(f'\nAll results are saved in {result_root}')
|
requirements.txt
CHANGED
|
@@ -15,6 +15,4 @@ tqdm
|
|
| 15 |
yapf
|
| 16 |
lpips
|
| 17 |
gdown # supports downloading the large file from Google Drive
|
| 18 |
-
|
| 19 |
-
# dlib
|
| 20 |
-
# conda install -c conda-forge dlib
|
|
|
|
| 15 |
yapf
|
| 16 |
lpips
|
| 17 |
gdown # supports downloading the large file from Google Drive
|
| 18 |
+
ffmpeg-python
|
|
|
|
|
|