Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from torchvision.models.video.resnet import BasicBlock, Bottleneck, Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D | |
from typing import Callable, List, Sequence, Type, Union | |
# TODO: upload models and load them | |
model_urls = { | |
"r2plus1d_34_8_ig65m": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip8_ig65m_from_scratch-9bae36ae.pth", # noqa: E501 | |
"r2plus1d_34_32_ig65m": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip32_ig65m_from_scratch-449a7af9.pth", # noqa: E501 | |
"r2plus1d_34_8_kinetics": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip8_ft_kinetics_from_ig65m-0aa0550b.pth", # noqa: E501 | |
"r2plus1d_34_32_kinetics": "https://github.com/moabitcoin/ig65m-pytorch/releases/download/v1.0.0/r2plus1d_34_clip32_ft_kinetics_from_ig65m-ade133f1.pth", # noqa: E501 | |
"r2plus1d_152_ig65m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/r2plus1d_152_ig65m_from_scratch_f106380637.pth", | |
"r2plus1d_152_ig_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/r2plus1d_152_ft_kinetics_from_ig65m_f107107466.pth", | |
"r2plus1d_152_sports1m_32frms": "", | |
"r2plus1d_152_sports1m_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/r2plus1d_152_ft_kinetics_from_sports1m_f128957437.pth", | |
"ir_csn_152_ig65m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_ig65m_from_scratch_f125286141.pth", | |
"ir_csn_152_ig_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_ft_kinetics_from_ig65m_f126851907.pth", | |
"ir_csn_152_sports1m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_Sports1M_from_scratch_f99918785.pth", | |
"ir_csn_152_sports1m_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/irCSN_152_ft_kinetics_from_Sports1M_f101599884.pth", | |
"ip_csn_152_ig65m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_ig65m_from_scratch_f130601052.pth", | |
"ip_csn_152_ig_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_ft_kinetics_from_ig65m_f133090949.pth", | |
"ip_csn_152_sports1m_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_Sports1M_from_scratch_f111018543.pth", | |
"ip_csn_152_sports1m_ft_kinetics_32frms": "https://github.com/bjuncek/VMZ/releases/download/test_models/ipCSN_152_ft_kinetics_from_Sports1M_f111279053.pth", | |
} | |
class VideoResNet(nn.Module): | |
def __init__( | |
self, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]], | |
layers: List[int], | |
stem: Callable[..., nn.Module], | |
num_classes: int = 400, | |
zero_init_residual: bool = False, | |
) -> None: | |
"""Generic resnet video generator. | |
Args: | |
block (Type[Union[BasicBlock, Bottleneck]]): resnet building block | |
conv_makers (List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]]): generator | |
function for each layer | |
layers (List[int]): number of blocks per layer | |
stem (Callable[..., nn.Module]): module specifying the ResNet stem. | |
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400. | |
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False. | |
""" | |
super().__init__() | |
self.inplanes = 64 | |
self.stem = stem() | |
self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1) | |
self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=2) | |
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
# init weights | |
for m in self.modules(): | |
if isinstance(m, nn.Conv3d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm3d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
nn.init.constant_(m.bias, 0) | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) # type: ignore[union-attr, arg-type] | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.stem(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
x = self.fc(x) | |
return x | |
def _make_layer( | |
self, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
conv_builder: Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]], | |
planes: int, | |
blocks: int, | |
stride: int = 1, | |
) -> nn.Sequential: | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
ds_stride = conv_builder.get_downsample_stride(stride) | |
downsample = nn.Sequential( | |
nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=ds_stride, bias=False), | |
nn.BatchNorm3d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, conv_builder, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes, conv_builder)) | |
return nn.Sequential(*layers) | |
def _generic_resnet(arch, pretrained=False, progress=False, **kwargs): | |
model = VideoResNet(**kwargs) | |
# We need exact Caffe2 momentum for BatchNorm scaling | |
for m in model.modules(): | |
if isinstance(m, nn.BatchNorm3d): | |
m.eps = 1e-3 | |
m.momentum = 0.9 | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
model_urls[arch], progress=progress | |
) | |
model.load_state_dict(state_dict) | |
return model | |
class BasicStem_Pool(nn.Sequential): | |
def __init__(self): | |
super(BasicStem_Pool, self).__init__( | |
nn.Conv3d( | |
3, | |
64, | |
kernel_size=(3, 7, 7), | |
stride=(1, 2, 2), | |
padding=(1, 3, 3), | |
bias=False, | |
), | |
nn.BatchNorm3d(64), | |
nn.ReLU(inplace=True), | |
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), | |
) | |
class R2Plus1dStem_Pool(nn.Sequential): | |
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution | |
""" | |
def __init__(self): | |
super(R2Plus1dStem_Pool, self).__init__( | |
nn.Conv3d( | |
3, | |
45, | |
kernel_size=(1, 7, 7), | |
stride=(1, 2, 2), | |
padding=(0, 3, 3), | |
bias=False, | |
), | |
nn.BatchNorm3d(45), | |
nn.ReLU(inplace=True), | |
nn.Conv3d( | |
45, | |
64, | |
kernel_size=(3, 1, 1), | |
stride=(1, 1, 1), | |
padding=(1, 0, 0), | |
bias=False, | |
), | |
nn.BatchNorm3d(64), | |
nn.ReLU(inplace=True), | |
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), | |
) | |
class Conv3DDepthwise(nn.Conv3d): | |
def __init__(self, in_planes, out_planes, midplanes=None, stride=1, padding=1): | |
assert in_planes == out_planes | |
super(Conv3DDepthwise, self).__init__( | |
in_channels=in_planes, | |
out_channels=out_planes, | |
kernel_size=(3, 3, 3), | |
stride=stride, | |
padding=padding, | |
groups=in_planes, | |
bias=False, | |
) | |
def get_downsample_stride(stride): | |
return (stride, stride, stride) | |
class IPConv3DDepthwise(nn.Sequential): | |
def __init__(self, in_planes, out_planes, midplanes, stride=1, padding=1): | |
assert in_planes == out_planes | |
super(IPConv3DDepthwise, self).__init__( | |
nn.Conv3d(in_planes, out_planes, kernel_size=1, bias=False), | |
nn.BatchNorm3d(out_planes), | |
# nn.ReLU(inplace=True), | |
Conv3DDepthwise(out_planes, out_planes, None, stride), | |
) | |
def get_downsample_stride(stride): | |
return (stride, stride, stride) | |
class Conv2Plus1D(nn.Sequential): | |
def __init__(self, in_planes, out_planes, midplanes, stride=1, padding=1): | |
midplanes = (in_planes * out_planes * 3 * 3 * 3) // ( | |
in_planes * 3 * 3 + 3 * out_planes | |
) | |
super(Conv2Plus1D, self).__init__( | |
nn.Conv3d( | |
in_planes, | |
midplanes, | |
kernel_size=(1, 3, 3), | |
stride=(1, stride, stride), | |
padding=(0, padding, padding), | |
bias=False, | |
), | |
nn.BatchNorm3d(midplanes), | |
nn.ReLU(inplace=True), | |
nn.Conv3d( | |
midplanes, | |
out_planes, | |
kernel_size=(3, 1, 1), | |
stride=(stride, 1, 1), | |
padding=(padding, 0, 0), | |
bias=False, | |
), | |
) | |
def get_downsample_stride(stride): | |
return (stride, stride, stride) | |