Spaces:
Running
Running
rename to app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
import tqdm
|
| 4 |
+
import transformers
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import seaborn as sns
|
| 9 |
+
import numpy as np
|
| 10 |
+
import plotly.figure_factory as ff
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
|
| 13 |
+
tokenizer_names_to_test = [
|
| 14 |
+
"xlm-roberta-base", # old style
|
| 15 |
+
"bert-base-uncased", # old style
|
| 16 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 17 |
+
"bigscience/bloom", # HuggingFace
|
| 18 |
+
"StabilityAI/stablelm-base-alpha-7b", # StableLM with Open Assistant
|
| 19 |
+
"google/flan-t5-base", # Flan T5 (better than T5), Google
|
| 20 |
+
"facebook/mbart-large-50", # Facebook
|
| 21 |
+
"facebook/nllb-200-distilled-600M", # Facebook
|
| 22 |
+
"EleutherAI/gpt-neox-20b", # same as Pythia
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
with st.sidebar:
|
| 26 |
+
with st.spinner('Loading dataset...'):
|
| 27 |
+
val_data = pd.read_csv('MassiveDatasetValidationData.csv')
|
| 28 |
+
st.success(f'Data loaded: {len(val_data)}')
|
| 29 |
+
|
| 30 |
+
languages = st.multiselect(
|
| 31 |
+
'Select languages',
|
| 32 |
+
options=sorted(val_data.lang.unique()),
|
| 33 |
+
default=['English', 'Spanish' ,'Chinese'],
|
| 34 |
+
max_selections=5
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# TODO multi-select tokenizers
|
| 38 |
+
# TODO add openai to this options
|
| 39 |
+
tokenizer_name = st.sidebar.selectbox('Tokenizers', options=tokenizer_names_to_test)
|
| 40 |
+
st.write('You selected:', tokenizer_name)
|
| 41 |
+
|
| 42 |
+
# with st.spinner('Loading tokenizer...'):
|
| 43 |
+
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
| 44 |
+
# st.success(f'Tokenizer loaded: {tokenizer_name}')
|
| 45 |
+
|
| 46 |
+
# # TODO - preload the tokenized versions ... much easier!
|
| 47 |
+
# # TODO - add the metadata data as well??? later on maybe
|
| 48 |
+
# with st.spinner('Calculating tokenization for data...'):
|
| 49 |
+
# if tokenizer_name not in val_data.columns:
|
| 50 |
+
# val_data[f'{tokenizer_name}'] = val_data.text.apply(lambda x: len(tokenizer.encode(x)))
|
| 51 |
+
# st.success('Completed.')
|
| 52 |
+
|
| 53 |
+
with st.container():
|
| 54 |
+
|
| 55 |
+
tokenizer_name = 'num_tokens_openai'
|
| 56 |
+
|
| 57 |
+
subset_df = val_data[val_data.lang.isin(languages)]
|
| 58 |
+
subset_data = [val_data[val_data.lang==_lang][tokenizer_name] for _lang in languages]
|
| 59 |
+
fig = ff.create_distplot(subset_data, group_labels=languages, show_hist=False)
|
| 60 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# for _lang in languages:
|
| 64 |
+
# subset = val_data[val_data.lang==_lang]
|
| 65 |
+
|
| 66 |
+
# fig = ff.create_distplot(val_data, bin_size=.5,
|
| 67 |
+
# curve_type='normal', # override default 'kde'
|
| 68 |
+
# colors=colors)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|