Spaces:
Running
Running
File size: 10,773 Bytes
c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac b7f9bcb bec5baa 6aaf516 bec5baa 6aaf516 c2f297a 1053127 c2f297a 77175ac c2f297a 77175ac bec5baa 77175ac bec5baa 77175ac c2f297a bec5baa c2f297a bec5baa b7f9bcb 77175ac bec5baa 77175ac b7f9bcb 6aaf516 b7f9bcb 6aaf516 b7f9bcb 6aaf516 b7f9bcb 6aaf516 b7f9bcb 6aaf516 b7f9bcb 6aaf516 3a795d8 6aaf516 bec5baa 6aaf516 bec5baa 6aaf516 b7f9bcb c2f297a 6aaf516 bec5baa 6aaf516 b7f9bcb c2f297a 6aaf516 77175ac c2f297a 77175ac b7f9bcb 6aaf516 b7f9bcb 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac 6aaf516 c2f297a 77175ac c2f297a 77175ac c2f297a 77175ac c2f297a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import json
import os
import re
import uuid
from pathlib import Path
import pandas as pd
import streamlit as st
from datasets import load_dataset
from huggingface_hub import CommitScheduler
from src.check_validity import validate_model
# define page config
st.set_page_config(page_title="IVACE Leaderboard", layout="wide")
# setup scheduler to upload user requests
request_file = Path("user_request/") / f"data_{uuid.uuid4()}.json"
request_folder = request_file.parent
# columns = [
# "eval_name",
# "Model",
# "Type",
# "Average β¬οΈ",
# "IFEval",
# "MMLU-PRO",
# "GPQA",
# "MUSR",
# "COβ cost (kg)",
# ]
# languages
lang_list = ["Spain", "Costa Rica", "Mexico", "Peru", "Uruguay"]
# column order
model_columns = ["model_name", "url", "type"]
task_columns = [f"tass_{lang.lower().replace(' ', '_')}" for lang in lang_list]
scheduler = CommitScheduler(
repo_id="iberbench/ivace-user-request",
repo_type="dataset",
private=True,
folder_path=request_folder,
token=st.secrets["HF_TOKEN"],
path_in_repo="data",
every=10,
)
def log_submission(input_dict: dict) -> None:
"""
Append input/outputs and user feedback to a JSON Lines file using a thread lock to avoid concurrent writes from different users.
"""
with scheduler.lock:
with request_file.open("a") as f:
f.write(json.dumps(input_dict))
f.write("\n")
# def get_url(html_content: str) -> str:
# match = re.search(r'href=["\'](https?://[^\s"\']+)', html_content)
# if match:
# url = match.group(1)
# return url
# else:
# raise ValueError("Url not found in the link")
def get_lang_columns(columns: list, lang: str):
"""Filter columns per language"""
lang_norm = lang.lower().replace(" ", "_")
return [col for col in columns if lang_norm in col]
@st.cache_data
def load_data(lang) -> pd.DataFrame:
try:
data = (
load_dataset("iberbench/lm-eval-results-ac", token=st.secrets["HF_TOKEN"])["train"]
.to_pandas()
)
# filter lang columns
task_lang_columns = get_lang_columns(task_columns, lang)
data = data[model_columns + task_lang_columns]
# data["Model"] = data["Model"].apply(get_url)
# data.sort_values(by="Average β¬οΈ", ascending=False, inplace=True)
# data.reset_index(drop=True, inplace=True)
# add column to apply filtering
data["Active"] = False
return data
except FileNotFoundError:
st.error("iberbench/lm-eval-results-ac was not found in the hub")
return pd.DataFrame()
# functions to create filter
def active_data(lang) -> pd.DataFrame:
"""Change all records as active"""
return st.session_state[f"leaderboard_data_{lang}"][
st.session_state[f"leaderboard_data_{lang}"]["Active"] == True
].copy()
def get_index(lang, row) -> pd.Series:
"""Get index of the row"""
return active_data(lang).iloc[row].name
def commit(lang) -> None:
"""Commit changes to the session state"""
for row in st.session_state[f"edited_data_{lang}"]["edited_rows"]:
row_index = get_index(lang, row)
for key, value in st.session_state[f"edited_data_{lang}"][
"edited_rows"
][row].items():
st.session_state[f"leaderboard_data_{lang}"].at[
row_index, key
] = value
def create_search_per_language(lang: str, search_dict: dict):
if not st.session_state[f"leaderboard_data_{lang}"].empty:
search_dict[lang] = st.text_input(
"Search for ...",
key=f"search_input_{lang}",
on_change=commit,
kwargs={"lang": lang},
)
if search_dict[lang] == "":
st.session_state[f"leaderboard_data_{lang}"].Active = True
else:
st.session_state[f"leaderboard_data_{lang}"].Active = False
st.session_state[f"leaderboard_data_{lang}"].loc[
st.session_state[f"leaderboard_data_{lang}"][
"model_name"
].str.contains(search_dict[lang], case=False),
"Active",
] = True
# select columns to display
task_lang_columns = get_lang_columns(task_columns, lang)
columns = model_columns + task_lang_columns
edited_data = st.data_editor(
active_data(lang),
column_order=columns,
key=f"edited_data_{lang}",
hide_index=False,
# column_config={"Model": st.column_config.LinkColumn("Model")},
column_config={"url": st.column_config.LinkColumn("url")},
)
else:
st.write("No data found to display on leaderboard.")
# streamlit UI
for lang in lang_list:
# todo: load a different dataset per language of load different column per lang
leaderboard_data = load_data(lang)
if f"leaderboard_data_{lang}" not in st.session_state:
st.session_state[f"leaderboard_data_{lang}"] = leaderboard_data
tabs = st.tabs(["Leaderboard", "Submit model"])
search_dict = {}
with tabs[0]:
# logo image
cols_logo = st.columns(5, vertical_alignment="center")
with cols_logo[2]:
st.image("assets/images/hf-logo.png", use_container_width=True)
# title
st.markdown(
"""
<div style="text-align: center;">
<h1>IVACE LLM Leaderboard</h1>
<p style="font-size: 1.2rem;">
Comparing Large Language Models in an <span style="font-weight: 600;">open</span>
and <span style="font-weight: 600;">reproducible</span> way
</p>
</div>
""",
unsafe_allow_html=True,
)
# create tabs per language
lang_tabs = st.tabs(lang_list)
for lang, lt in zip(lang_list, lang_tabs):
with lt:
create_search_per_language(lang, search_dict)
with tabs[1]:
st.header("Submit model")
def get_id_number(id_val):
html_template = f"""
<div style="display: flex; align-items: flex-start; margin-bottom: 1rem;">
<div style="
width: 32px;
height: 32px;
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
border: 1px solid #007BFF;
color: #007BFF;
font-size: 0.875rem;
font-weight: 600;
background-color: transparent;">
{id_val}
</div>"""
return html_template
# create guide info
guide_info_list = []
html_path = "assets/html"
for filename in os.listdir(html_path):
file_path = os.path.join(html_path, filename)
with open(file_path, "r", encoding="utf-8") as file:
guide_info_list.append(file.read())
# display adding number id
for i, info_div in enumerate(guide_info_list):
st.markdown(get_id_number(i + 1) + info_div, unsafe_allow_html=True)
with st.form("submit_model_form"):
model_name = st.text_input(
"Model Name (format: user_name/model_name)",
help="Your model should be public on the Hub and follow the username/model-id format (e.g. mistralai/Mistral-7B-v0.1).",
)
description = st.text_area(
"Description",
help="Add a description of the proposed model for the evaluation to help prioritize its evaluation",
)
user_contact = st.text_input(
"Your Contact Email",
help="User e-mail to contact when there are updates",
)
precision_option = st.selectbox(
"Choose precision format:",
help="Size limits vary by precision: β’ FP16/BF16: up to 100B parameters β’ 8-bit: up to 280B parameters (2x) β’ 4-bit: up to 560B parameters (4x) Choose carefully as incorrect precision can cause evaluation errors.",
options=["float16", "bfloat16", "8bit", "4bit", "GPTQ"],
index=0,
)
weight_type_option = st.selectbox(
"Select what type of weights are being loaded from the checkpoint provided:",
help="Original: Complete model weights in safetensors format Delta: Weight differences from base model (requires base model for size calculation) Adapter: Lightweight fine-tuning layers (requires base model for size calculation)",
options=["Original", "Adapter", "Delta"],
index=0,
)
base_model_name = st.text_input(
"Base model",
help="Required for delta weights or adapters. This information is used to identify the original model and calculate the total parameter count by combining base model and adapter/delta parameters.",
value="",
)
model_type = st.selectbox(
"Choose model type:",
help="π’ Pretrained: Base models trained on text using masked modeling πΆ Fine-tuned: Domain-specific optimization π¬ Chat: Models using RLHF, DPO, or IFT for conversation π€ Merge: Combined weights without additional training",
options=[
"π’ Pretrained",
"πΆ Fine-tuned",
"π¬ Chat",
"π€ Merge",
],
)
submit_button = st.form_submit_button("Submit Request")
if submit_button:
# validate model size, license, chat_templates
use_chat_template = True if model_type == "π¬ Chat" else False
validation_error = validate_model(
model_name,
precision_option,
base_model_name,
weight_type_option,
use_chat_template,
)
if validation_error is not None:
st.error(validation_error)
elif not re.match(r"[^@]+@[^@]+\.[^@]+", user_contact):
st.error("Invalid email address.")
else:
input_dict = {
"model_name": model_name,
"description": description,
"user_contact": user_contact,
"precision_option": precision_option,
"weight_type_option": weight_type_option,
"base_model_name": base_model_name,
"model_type": model_type,
}
try:
log_submission(input_dict)
st.success("Your request has been sent successfully.")
except Exception as e:
st.error(
f"Failed to send your request: {e}. Please try again later."
)
|