Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ef153ea
1
Parent(s):
9aec2d7
Init models only once
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
import base64
|
2 |
-
import os.path
|
3 |
-
from io import BytesIO
|
4 |
-
from pathlib import Path
|
5 |
|
|
|
|
|
|
|
|
|
6 |
import spaces
|
7 |
import glob
|
8 |
import numpy as np
|
@@ -10,19 +10,22 @@ import gradio as gr
|
|
10 |
import rasterio as rio
|
11 |
import matplotlib.pyplot as plt
|
12 |
import matplotlib as mpl
|
|
|
|
|
13 |
from PIL import Image
|
14 |
from matplotlib import rcParams
|
15 |
from msclip.inference import run_inference_classification
|
|
|
16 |
|
17 |
rcParams["font.size"] = 9
|
18 |
rcParams["axes.titlesize"] = 9
|
19 |
IMG_PX = 300
|
20 |
|
21 |
-
import sys
|
22 |
-
import csv
|
23 |
-
|
24 |
csv.field_size_limit(sys.maxsize)
|
25 |
|
|
|
|
|
|
|
26 |
EXAMPLES = {
|
27 |
"EuroSAT": {
|
28 |
"images": glob.glob("examples/eurosat/*.tif"),
|
@@ -163,7 +166,14 @@ def classify(images, class_text):
|
|
163 |
class_names = [c.strip() for c in class_text.split(",") if c.strip()]
|
164 |
cards = []
|
165 |
|
166 |
-
df = run_inference_classification(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
for img_path, (id, row) in zip(images, df.iterrows()):
|
168 |
scores = row[2:].astype(float) # drop filename column
|
169 |
top = scores.sort_values(ascending=False)[:3]
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import csv
|
6 |
import spaces
|
7 |
import glob
|
8 |
import numpy as np
|
|
|
10 |
import rasterio as rio
|
11 |
import matplotlib.pyplot as plt
|
12 |
import matplotlib as mpl
|
13 |
+
from io import BytesIO
|
14 |
+
from pathlib import Path
|
15 |
from PIL import Image
|
16 |
from matplotlib import rcParams
|
17 |
from msclip.inference import run_inference_classification
|
18 |
+
from msclip.inference.utils import build_model
|
19 |
|
20 |
rcParams["font.size"] = 9
|
21 |
rcParams["axes.titlesize"] = 9
|
22 |
IMG_PX = 300
|
23 |
|
|
|
|
|
|
|
24 |
csv.field_size_limit(sys.maxsize)
|
25 |
|
26 |
+
# Init Llama3-MS-CLIP from Hugging Face
|
27 |
+
model, preprocess, tokenizer = build_model()
|
28 |
+
|
29 |
EXAMPLES = {
|
30 |
"EuroSAT": {
|
31 |
"images": glob.glob("examples/eurosat/*.tif"),
|
|
|
166 |
class_names = [c.strip() for c in class_text.split(",") if c.strip()]
|
167 |
cards = []
|
168 |
|
169 |
+
df = run_inference_classification(
|
170 |
+
model=model,
|
171 |
+
preprocess=preprocess,
|
172 |
+
tokenizer=tokenizer,
|
173 |
+
image_path=images,
|
174 |
+
class_names=class_names,
|
175 |
+
verbose=False
|
176 |
+
)
|
177 |
for img_path, (id, row) in zip(images, df.iterrows()):
|
178 |
scores = row[2:].astype(float) # drop filename column
|
179 |
top = scores.sort_values(ascending=False)[:3]
|