Spaces:
Runtime error
Runtime error
Yotam-Perlitz
commited on
Commit
·
a3b611d
1
Parent(s):
9e72aa4
improve logic
Browse filesSigned-off-by: Yotam-Perlitz <[email protected]>
app.py
CHANGED
|
@@ -8,6 +8,26 @@ from bat import Benchmark, Config, Reporter, Tester
|
|
| 8 |
from datetime import datetime
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
holistic_scenarios = [
|
| 12 |
"Helm Lite",
|
| 13 |
"HF OpenLLM v2",
|
|
@@ -21,14 +41,38 @@ holistic_scenarios = [
|
|
| 21 |
|
| 22 |
|
| 23 |
st.markdown(
|
| 24 |
-
"""
|
|
|
|
|
|
|
| 25 |
unsafe_allow_html=True,
|
| 26 |
)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
st.markdown(
|
| 29 |
"""
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
"""
|
| 33 |
)
|
| 34 |
|
|
@@ -38,26 +82,19 @@ all_scenarios_for_aggragate = (
|
|
| 38 |
all_scenarios_for_aggragate.df["scenario"].unique().tolist()
|
| 39 |
)
|
| 40 |
|
| 41 |
-
st.
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
-
with st.form("my_form_0"):
|
| 46 |
-
# leftcol, rightcol = st.columns([5, 1])
|
| 47 |
-
# with leftcol:
|
| 48 |
-
aggragate_scenarios = st.multiselect(
|
| 49 |
-
"Scenarios in Aggregate (defualts are the 'Holistic' benchmarks)",
|
| 50 |
-
all_scenarios_for_aggragate,
|
| 51 |
-
holistic_scenarios,
|
| 52 |
-
)
|
| 53 |
-
# with rightcol:
|
| 54 |
-
# st.markdown("###")
|
| 55 |
-
submitted = st.form_submit_button(label="\n\nRun BAT\n\n")
|
| 56 |
-
|
| 57 |
-
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="⚙️"):
|
| 58 |
with st.form("my_form_1"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
corr_type = st.selectbox(
|
| 60 |
-
label="
|
| 61 |
)
|
| 62 |
|
| 63 |
aggregate_scenario_whitelist = aggragate_scenarios
|
|
@@ -68,13 +105,13 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
| 68 |
# ]
|
| 69 |
|
| 70 |
model_select_strategy = st.selectbox(
|
| 71 |
-
label="Select strategy",
|
| 72 |
options=["random", "top_aggregate", "somewhere_aggregate"],
|
| 73 |
index=0,
|
| 74 |
)
|
| 75 |
|
| 76 |
n_models_taken_list = st.slider(
|
| 77 |
-
label="
|
| 78 |
min_value=3,
|
| 79 |
max_value=15,
|
| 80 |
value=8,
|
|
@@ -82,46 +119,67 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
| 82 |
|
| 83 |
n_models_taken_list = [n_models_taken_list]
|
| 84 |
|
| 85 |
-
n_exps =
|
| 86 |
|
| 87 |
submitted = st.form_submit_button(label="Run BAT")
|
| 88 |
|
|
|
|
| 89 |
with st.expander("Add your benchmarks here!", icon="🔥"):
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
my_benchmark = Benchmark()
|
| 101 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
df = pd.read_csv(uploaded_file)
|
| 103 |
|
| 104 |
my_benchmark.assign_df(
|
| 105 |
df,
|
| 106 |
data_source=f"uploaded_benchmark_{datetime.now().strftime('%y%m%d')}.csv",
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
allbench = Benchmark()
|
| 110 |
-
allbench.load_local_catalog()
|
| 111 |
-
|
| 112 |
-
allbench.add_aggregate(
|
| 113 |
-
new_col_name="aggregate",
|
| 114 |
-
agg_source_name="aggregate",
|
| 115 |
-
scenario_whitelist=aggregate_scenario_whitelist,
|
| 116 |
-
min_scenario_for_models_to_appear_in_agg=1
|
| 117 |
-
if len(aggregate_scenario_whitelist) == 1
|
| 118 |
-
else 3,
|
| 119 |
)
|
| 120 |
|
| 121 |
uploaded_models = my_benchmark.df[
|
| 122 |
my_benchmark.df["source"].str.contains("uploaded")
|
| 123 |
]["model"].unique()
|
| 124 |
-
aggregate_models =
|
| 125 |
"model"
|
| 126 |
].unique()
|
| 127 |
|
|
@@ -180,8 +238,12 @@ def run_load(
|
|
| 180 |
aggregate_scores = pd.read_csv(
|
| 181 |
cache_path.replace("agreement", "aggregate_scores")
|
| 182 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
-
return agreements, aggregate_scores
|
| 185 |
|
| 186 |
else:
|
| 187 |
print("Cached results not found, calculating")
|
|
@@ -245,11 +307,12 @@ def run_load(
|
|
| 245 |
aggragate_scores.to_csv(
|
| 246 |
cache_path.replace("agreement", "aggregate_scores"), index=False
|
| 247 |
)
|
|
|
|
| 248 |
|
| 249 |
-
return agreements, aggragate_scores
|
| 250 |
|
| 251 |
|
| 252 |
-
agreements, aggragare_score_df = run_load(
|
| 253 |
aggregate_scenario_whitelist=aggregate_scenario_whitelist,
|
| 254 |
n_models_taken_list=n_models_taken_list,
|
| 255 |
model_select_strategy_list=[model_select_strategy],
|
|
@@ -275,17 +338,15 @@ z_scores["date"] = z_scores["source"].apply(
|
|
| 275 |
else x.split(".csv")[0].split("_")[-2]
|
| 276 |
)
|
| 277 |
|
|
|
|
| 278 |
|
| 279 |
-
|
| 280 |
|
| 281 |
-
# z_scores["scenario"] = z_scores["scenario"].apply(lambda x: get_nice_benchmark_name(x))
|
| 282 |
-
z_scores["date"] = pd.to_datetime("20" + z_scores["date"]).dt.date
|
| 283 |
-
# , format="%y%m%d"
|
| 284 |
data = (
|
| 285 |
z_scores.rename(
|
| 286 |
columns={
|
| 287 |
"scenario": "Benchmark",
|
| 288 |
-
"z_score":
|
| 289 |
"corr_with_agg": corr_name,
|
| 290 |
"p_value_of_corr_with_agg": "p-value of Corr.",
|
| 291 |
# "n_models_of_corr_with_agg": "# Models Used",
|
|
@@ -293,7 +354,7 @@ data = (
|
|
| 293 |
"date": "Snapshot Date",
|
| 294 |
}
|
| 295 |
)
|
| 296 |
-
.sort_values(
|
| 297 |
.reset_index(drop=True)
|
| 298 |
)
|
| 299 |
|
|
@@ -308,10 +369,10 @@ def highlight_uploaded_benchmark(row):
|
|
| 308 |
|
| 309 |
styled_data = (
|
| 310 |
data.style.background_gradient(
|
| 311 |
-
subset=[
|
| 312 |
cmap="RdYlGn",
|
| 313 |
-
vmin=-data[
|
| 314 |
-
vmax=data[
|
| 315 |
)
|
| 316 |
.apply(highlight_uploaded_benchmark, axis=1)
|
| 317 |
.background_gradient(
|
|
@@ -320,17 +381,19 @@ styled_data = (
|
|
| 320 |
vmin=0.1,
|
| 321 |
vmax=1,
|
| 322 |
)
|
| 323 |
-
.format(subset=[
|
| 324 |
.set_properties(**{"text-align": "center"})
|
| 325 |
)
|
| 326 |
|
| 327 |
cols_used = [
|
| 328 |
"Benchmark",
|
| 329 |
-
|
| 330 |
corr_name,
|
| 331 |
"p-value of Corr.",
|
| 332 |
"Snapshot Date",
|
| 333 |
]
|
|
|
|
|
|
|
| 334 |
st.dataframe(
|
| 335 |
data=styled_data,
|
| 336 |
column_order=cols_used,
|
|
@@ -348,7 +411,8 @@ aggragare_score_df.rename(
|
|
| 348 |
},
|
| 349 |
inplace=True,
|
| 350 |
)
|
| 351 |
-
|
|
|
|
| 352 |
st.dataframe(
|
| 353 |
data=aggragare_score_df,
|
| 354 |
hide_index=True,
|
|
@@ -632,6 +696,52 @@ with st.expander(label="Citations"):
|
|
| 632 |
"""
|
| 633 |
)
|
| 634 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
st.markdown(
|
| 636 |
"BenchBench-Leaderboard complements our study, where we analyzed over 40 prominent benchmarks and introduced standardized practices to enhance the robustness and validity of benchmark evaluations through the [BenchBench Python package](#). "
|
| 637 |
"The BenchBench-Leaderboard serves as a dynamic platform for benchmark comparison and is an essential tool for researchers and practitioners in the language model field aiming to select and utilize benchmarks effectively. "
|
|
@@ -648,14 +758,6 @@ st.write(r"""
|
|
| 648 |
""")
|
| 649 |
|
| 650 |
|
| 651 |
-
benchmarks = data["Benchmark"].unique().tolist()
|
| 652 |
-
plotted_scenario = st.selectbox(
|
| 653 |
-
"Choose Benchmark to plot",
|
| 654 |
-
benchmarks,
|
| 655 |
-
index=benchmarks.index("LMSys Arena"),
|
| 656 |
-
)
|
| 657 |
-
|
| 658 |
-
|
| 659 |
fig = px.histogram(
|
| 660 |
data.query("Benchmark!=@plotted_scenario"), x=corr_name, nbins=len(data) - 1
|
| 661 |
)
|
|
|
|
| 8 |
from datetime import datetime
|
| 9 |
|
| 10 |
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="BenchBench",
|
| 13 |
+
page_icon="🏋️♂️",
|
| 14 |
+
layout="wide",
|
| 15 |
+
initial_sidebar_state="auto",
|
| 16 |
+
menu_items=None,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# # Inject custom CSS to set the width of the sidebar
|
| 20 |
+
# st.markdown(
|
| 21 |
+
# """
|
| 22 |
+
# <style>
|
| 23 |
+
# section[data-testid="stSidebar"] {
|
| 24 |
+
# width: 200px !important; # Set the width to your desired value
|
| 25 |
+
# }
|
| 26 |
+
# </style>
|
| 27 |
+
# """,
|
| 28 |
+
# unsafe_allow_html=True,
|
| 29 |
+
# )
|
| 30 |
+
|
| 31 |
holistic_scenarios = [
|
| 32 |
"Helm Lite",
|
| 33 |
"HF OpenLLM v2",
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
st.markdown(
|
| 44 |
+
"""
|
| 45 |
+
<h1 style='text-align: center; color: black;'>🏋️♂️ BenchBench Leaderboard 🏋️♂️</h1>
|
| 46 |
+
""",
|
| 47 |
unsafe_allow_html=True,
|
| 48 |
)
|
| 49 |
|
| 50 |
+
st.divider()
|
| 51 |
+
|
| 52 |
+
st.markdown(
|
| 53 |
+
"""
|
| 54 |
+
The BenchBench leaderboard ranks benchmarks based on their agreement with the *Aggregate Benchmark* – a comprehensive, combined measure of existing benchmark results.
|
| 55 |
+
\n
|
| 56 |
+
To achive it, we scraped results from multiple benchmarks (citations below) to allow for obtaining benchmark agreement results with a wide range of benchmark using a large set of models.
|
| 57 |
+
\n
|
| 58 |
+
BenchBench is for you if:
|
| 59 |
+
"""
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
st.markdown(
|
| 63 |
"""
|
| 64 |
+
- **You have a new benchmark**: Show that it agrees/disagrees with known benchmarks.
|
| 65 |
+
- **You are looking for a benchmark to run/trust**: Find an efficient/private/preferble alternative.
|
| 66 |
+
"""
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
st.markdown(
|
| 70 |
+
"""
|
| 71 |
+
In our work -- [Benchmark Agreement Testing Done Right](https://arxiv.org/abs/2407.13696),
|
| 72 |
+
we standardize BAT and show the importance of its configurations, notably,
|
| 73 |
+
the benchmarks we compare to, and the models we use to compare with, check it out int he sidebar.
|
| 74 |
+
\n
|
| 75 |
+
We show that agreements are best reporesented with the Z Score, the relative agreement of each benchmark to the Aggragate benchmark, as presented below.
|
| 76 |
"""
|
| 77 |
)
|
| 78 |
|
|
|
|
| 82 |
all_scenarios_for_aggragate.df["scenario"].unique().tolist()
|
| 83 |
)
|
| 84 |
|
| 85 |
+
with st.sidebar:
|
| 86 |
+
st.markdown("""# Configurations""")
|
| 87 |
|
| 88 |
+
# with st.expander("Leaderboard configurations (defaults are great BTW)", icon="⚙️"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with st.form("my_form_1"):
|
| 90 |
+
aggragate_scenarios = st.multiselect(
|
| 91 |
+
"Aggregate Benchmark",
|
| 92 |
+
all_scenarios_for_aggragate,
|
| 93 |
+
holistic_scenarios,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
corr_type = st.selectbox(
|
| 97 |
+
label="Correlation type", options=["kendall", "pearson"], index=0
|
| 98 |
)
|
| 99 |
|
| 100 |
aggregate_scenario_whitelist = aggragate_scenarios
|
|
|
|
| 105 |
# ]
|
| 106 |
|
| 107 |
model_select_strategy = st.selectbox(
|
| 108 |
+
label="Model Select strategy",
|
| 109 |
options=["random", "top_aggregate", "somewhere_aggregate"],
|
| 110 |
index=0,
|
| 111 |
)
|
| 112 |
|
| 113 |
n_models_taken_list = st.slider(
|
| 114 |
+
label="Minimal number of models to use",
|
| 115 |
min_value=3,
|
| 116 |
max_value=15,
|
| 117 |
value=8,
|
|
|
|
| 119 |
|
| 120 |
n_models_taken_list = [n_models_taken_list]
|
| 121 |
|
| 122 |
+
n_exps = 5
|
| 123 |
|
| 124 |
submitted = st.form_submit_button(label="Run BAT")
|
| 125 |
|
| 126 |
+
|
| 127 |
with st.expander("Add your benchmarks here!", icon="🔥"):
|
| 128 |
+
aggbench = Benchmark()
|
| 129 |
+
aggbench.load_local_catalog()
|
| 130 |
+
|
| 131 |
+
aggbench.add_aggregate(
|
| 132 |
+
new_col_name="aggregate",
|
| 133 |
+
agg_source_name="aggregate",
|
| 134 |
+
scenario_whitelist=aggregate_scenario_whitelist,
|
| 135 |
+
min_scenario_for_models_to_appear_in_agg=1
|
| 136 |
+
if len(aggregate_scenario_whitelist) == 1
|
| 137 |
+
else 3,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
agg_models = (
|
| 141 |
+
aggbench.df.query('scenario=="aggregate"').sample(n=10)["model"].tolist()
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
st.markdown(
|
| 145 |
+
"Adding your benchmark is as simple as uploading a csv with the following format, one column indicates the model and the other the benchmark scores."
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
st.dataframe(
|
| 149 |
+
pd.read_csv("assets/mybench_240901.csv"),
|
| 150 |
+
use_container_width=True,
|
| 151 |
+
hide_index=True,
|
| 152 |
+
height=200,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
st.markdown(
|
| 156 |
+
"Not sure, what models you should run your benchmark on?" "\ntry these:"
|
| 157 |
)
|
| 158 |
|
| 159 |
+
st.code(agg_models)
|
| 160 |
+
|
| 161 |
+
st.markdown("Got the data? Upload it here 👇:")
|
| 162 |
+
|
| 163 |
+
uploaded_file = st.file_uploader("Add your benchmark as a CSV")
|
| 164 |
+
|
| 165 |
my_benchmark = Benchmark()
|
| 166 |
if uploaded_file is not None:
|
| 167 |
+
st.markdown(
|
| 168 |
+
"Your benchmark has been uploaded, BAT results will soon be caluclated... check out its results here: [Benchmark BAT Report Card](#benchmark-report-card)"
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
df = pd.read_csv(uploaded_file)
|
| 172 |
|
| 173 |
my_benchmark.assign_df(
|
| 174 |
df,
|
| 175 |
data_source=f"uploaded_benchmark_{datetime.now().strftime('%y%m%d')}.csv",
|
| 176 |
+
normalized_names=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
)
|
| 178 |
|
| 179 |
uploaded_models = my_benchmark.df[
|
| 180 |
my_benchmark.df["source"].str.contains("uploaded")
|
| 181 |
]["model"].unique()
|
| 182 |
+
aggregate_models = aggbench.df[aggbench.df["source"].str.contains("aggregate")][
|
| 183 |
"model"
|
| 184 |
].unique()
|
| 185 |
|
|
|
|
| 238 |
aggregate_scores = pd.read_csv(
|
| 239 |
cache_path.replace("agreement", "aggregate_scores")
|
| 240 |
)
|
| 241 |
+
allbench = Benchmark(
|
| 242 |
+
pd.read_csv(cache_path.replace("agreement", "allbench")),
|
| 243 |
+
normalized_names=True,
|
| 244 |
+
)
|
| 245 |
|
| 246 |
+
return agreements, aggregate_scores, allbench
|
| 247 |
|
| 248 |
else:
|
| 249 |
print("Cached results not found, calculating")
|
|
|
|
| 307 |
aggragate_scores.to_csv(
|
| 308 |
cache_path.replace("agreement", "aggregate_scores"), index=False
|
| 309 |
)
|
| 310 |
+
allbench.df.to_csv(cache_path.replace("agreement", "allbench"), index=False)
|
| 311 |
|
| 312 |
+
return agreements, aggragate_scores, allbench
|
| 313 |
|
| 314 |
|
| 315 |
+
agreements, aggragare_score_df, allbench = run_load(
|
| 316 |
aggregate_scenario_whitelist=aggregate_scenario_whitelist,
|
| 317 |
n_models_taken_list=n_models_taken_list,
|
| 318 |
model_select_strategy_list=[model_select_strategy],
|
|
|
|
| 338 |
else x.split(".csv")[0].split("_")[-2]
|
| 339 |
)
|
| 340 |
|
| 341 |
+
z_scores["date"] = pd.to_datetime("20" + z_scores["date"]).dt.date
|
| 342 |
|
| 343 |
+
z_score_name = "Relative agreement (Z Score)"
|
| 344 |
|
|
|
|
|
|
|
|
|
|
| 345 |
data = (
|
| 346 |
z_scores.rename(
|
| 347 |
columns={
|
| 348 |
"scenario": "Benchmark",
|
| 349 |
+
"z_score": z_score_name,
|
| 350 |
"corr_with_agg": corr_name,
|
| 351 |
"p_value_of_corr_with_agg": "p-value of Corr.",
|
| 352 |
# "n_models_of_corr_with_agg": "# Models Used",
|
|
|
|
| 354 |
"date": "Snapshot Date",
|
| 355 |
}
|
| 356 |
)
|
| 357 |
+
.sort_values(z_score_name, ascending=False)
|
| 358 |
.reset_index(drop=True)
|
| 359 |
)
|
| 360 |
|
|
|
|
| 369 |
|
| 370 |
styled_data = (
|
| 371 |
data.style.background_gradient(
|
| 372 |
+
subset=[z_score_name],
|
| 373 |
cmap="RdYlGn",
|
| 374 |
+
vmin=-data[z_score_name].abs().max(),
|
| 375 |
+
vmax=data[z_score_name].abs().max(),
|
| 376 |
)
|
| 377 |
.apply(highlight_uploaded_benchmark, axis=1)
|
| 378 |
.background_gradient(
|
|
|
|
| 381 |
vmin=0.1,
|
| 382 |
vmax=1,
|
| 383 |
)
|
| 384 |
+
.format(subset=[z_score_name, corr_name, "p-value of Corr."], formatter="{:.2}")
|
| 385 |
.set_properties(**{"text-align": "center"})
|
| 386 |
)
|
| 387 |
|
| 388 |
cols_used = [
|
| 389 |
"Benchmark",
|
| 390 |
+
z_score_name,
|
| 391 |
corr_name,
|
| 392 |
"p-value of Corr.",
|
| 393 |
"Snapshot Date",
|
| 394 |
]
|
| 395 |
+
|
| 396 |
+
|
| 397 |
st.dataframe(
|
| 398 |
data=styled_data,
|
| 399 |
column_order=cols_used,
|
|
|
|
| 411 |
},
|
| 412 |
inplace=True,
|
| 413 |
)
|
| 414 |
+
|
| 415 |
+
with st.expander(label="Aggragate Benchmark scores"):
|
| 416 |
st.dataframe(
|
| 417 |
data=aggragare_score_df,
|
| 418 |
hide_index=True,
|
|
|
|
| 696 |
"""
|
| 697 |
)
|
| 698 |
|
| 699 |
+
|
| 700 |
+
st.subheader("Benchmark Report Card")
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
benchmarks = allbench.df["scenario"].unique().tolist()
|
| 704 |
+
index_to_use = 0
|
| 705 |
+
if not my_benchmark.is_empty:
|
| 706 |
+
index_to_use = benchmarks.index(my_benchmark.df["scenario"].unique()[0])
|
| 707 |
+
|
| 708 |
+
plotted_scenario = st.selectbox(
|
| 709 |
+
"Choose Benchmark to plot",
|
| 710 |
+
benchmarks,
|
| 711 |
+
index=index_to_use,
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
col1, col2, col3 = st.columns(3)
|
| 715 |
+
cur_data = data.query(f"Benchmark=='{plotted_scenario}'")
|
| 716 |
+
col1.metric("Relative agreement", cur_data["Relative agreement (Z Score)"])
|
| 717 |
+
col2.metric("Kendall Tau Corr.", cur_data["Kendall Tau Corr."])
|
| 718 |
+
col3.metric("p-value of Corr.", cur_data["p-value of Corr."])
|
| 719 |
+
|
| 720 |
+
cur_df = allbench.df.query(f'scenario=="aggregate" or scenario=="{plotted_scenario}"')
|
| 721 |
+
|
| 722 |
+
# Filter models that are present in both scenarios
|
| 723 |
+
models_in_both = cur_df.groupby("model")["scenario"].nunique().eq(2).index
|
| 724 |
+
|
| 725 |
+
# Pivot the DataFrame to have scenarios as columns
|
| 726 |
+
df_pivot = cur_df[cur_df["model"].isin(models_in_both)].pivot(
|
| 727 |
+
index="model", columns="scenario", values="score"
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
# Create the scatter plot using Plotly Express
|
| 731 |
+
fig = px.scatter(
|
| 732 |
+
df_pivot,
|
| 733 |
+
x=df_pivot.columns[0],
|
| 734 |
+
y=df_pivot.columns[1],
|
| 735 |
+
trendline="ols",
|
| 736 |
+
labels={
|
| 737 |
+
df_pivot.columns[0]: df_pivot.columns[0],
|
| 738 |
+
df_pivot.columns[1]: df_pivot.columns[1],
|
| 739 |
+
},
|
| 740 |
+
hover_name=df_pivot.index,
|
| 741 |
+
title="Model Scores Comparison between Scenarios",
|
| 742 |
+
)
|
| 743 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 744 |
+
|
| 745 |
st.markdown(
|
| 746 |
"BenchBench-Leaderboard complements our study, where we analyzed over 40 prominent benchmarks and introduced standardized practices to enhance the robustness and validity of benchmark evaluations through the [BenchBench Python package](#). "
|
| 747 |
"The BenchBench-Leaderboard serves as a dynamic platform for benchmark comparison and is an essential tool for researchers and practitioners in the language model field aiming to select and utilize benchmarks effectively. "
|
|
|
|
| 758 |
""")
|
| 759 |
|
| 760 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
fig = px.histogram(
|
| 762 |
data.query("Benchmark!=@plotted_scenario"), x=corr_name, nbins=len(data) - 1
|
| 763 |
)
|