Spaces:
Runtime error
Runtime error
Commit
·
b64cfbe
1
Parent(s):
41a03fb
added proper support for name overide in Molnet tasks and a reasonable texts for the new tasks
Browse files- mammal_demo/__init__.py +38 -15
- mammal_demo/molnet_task.py +5 -4
mammal_demo/__init__.py
CHANGED
|
@@ -17,48 +17,71 @@ def tasks_and_models():
|
|
| 17 |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
| 18 |
# we pass the all_models dict and update it when we actualy have the models.
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
bbbp_task =
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# create the model holders. hold the model and the tokenizer, lazy download
|
| 29 |
# note that the list of relevent tasks needs to be stated.
|
| 30 |
all_models.register_model(
|
| 31 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
| 32 |
-
task_list=[
|
| 33 |
)
|
| 34 |
all_models.register_model(
|
| 35 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
|
| 36 |
-
task_list=[
|
| 37 |
)
|
| 38 |
|
| 39 |
all_models.register_model(
|
| 40 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
| 41 |
-
task_list=[
|
| 42 |
)
|
| 43 |
all_models.register_model(
|
| 44 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
| 45 |
-
task_list=[
|
| 46 |
)
|
| 47 |
all_models.register_model(
|
| 48 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
| 49 |
-
task_list=[
|
| 50 |
)
|
| 51 |
all_models.register_model(
|
| 52 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox",
|
| 53 |
-
task_list=[
|
| 54 |
)
|
| 55 |
all_models.register_model(
|
| 56 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda",
|
| 57 |
-
task_list=[
|
| 58 |
)
|
| 59 |
all_models.register_model(
|
| 60 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp",
|
| 61 |
-
task_list=[
|
| 62 |
)
|
| 63 |
|
| 64 |
return all_tasks,all_models
|
|
|
|
| 17 |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
| 18 |
# we pass the all_models dict and update it when we actualy have the models.
|
| 19 |
|
| 20 |
+
ppi_task_name = all_tasks.register_task(PpiTask(model_dict=all_models))
|
| 21 |
+
tdi_task_name = all_tasks.register_task(DtiTask(model_dict=all_models))
|
| 22 |
+
ps_task_name = all_tasks.register_task(PsTask(model_dict=all_models))
|
| 23 |
+
tcr_task_name = all_tasks.register_task(TcrTask(model_dict=all_models))
|
| 24 |
+
bbbp_task = MolnetTask(model_dict=all_models,task_name="BBBP", name= "Blood-Brain Barrier Penetration")
|
| 25 |
+
bbbp_task.markup_text = """
|
| 26 |
+
# Mammal based small molecule blood-brain barrier penetration demonstration
|
| 27 |
+
|
| 28 |
+
Given a drug (in SMILES), estimate the likelihood that it will penetrate the Blood-Brain Barrier.
|
| 29 |
+
"""
|
| 30 |
+
bbbp_task_name = all_tasks.register_task(bbbp_task)
|
| 31 |
+
|
| 32 |
+
toxicity_task = MolnetTask(model_dict=all_models,task_name="TOXICITY", name= "Drug Toxicity Trials Failer")
|
| 33 |
+
toxicity_task.markup_text = """
|
| 34 |
+
# Mammal based small molecule toxicity trials failer estimation demonstration
|
| 35 |
+
|
| 36 |
+
Given a drug (in SMILES), estimate the likelihood that it will fail in clinical toxicity trials.
|
| 37 |
+
"""
|
| 38 |
+
toxicity_task_name = all_tasks.register_task(toxicity_task)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
fda_appr_task=MolnetTask(model_dict=all_models,task_name="FDA_APPR", name="drug FDA approval demonstration")
|
| 43 |
+
fda_appr_task.markup_text = """
|
| 44 |
+
# Mammal based small molecule drug FDA approval demonstration
|
| 45 |
+
|
| 46 |
+
Given a drug (in SMILES), estimate the likelihood that it will be approved by the FDA.
|
| 47 |
+
"""
|
| 48 |
+
fda_appr_task_name = all_tasks.register_task(fda_appr_task)
|
| 49 |
+
|
| 50 |
|
| 51 |
# create the model holders. hold the model and the tokenizer, lazy download
|
| 52 |
# note that the list of relevent tasks needs to be stated.
|
| 53 |
all_models.register_model(
|
| 54 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
| 55 |
+
task_list=[tdi_task_name],
|
| 56 |
)
|
| 57 |
all_models.register_model(
|
| 58 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
|
| 59 |
+
task_list=[tdi_task_name],
|
| 60 |
)
|
| 61 |
|
| 62 |
all_models.register_model(
|
| 63 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
| 64 |
+
task_list=[tcr_task_name],
|
| 65 |
)
|
| 66 |
all_models.register_model(
|
| 67 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
| 68 |
+
task_list=[ps_task_name],
|
| 69 |
)
|
| 70 |
all_models.register_model(
|
| 71 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
| 72 |
+
task_list=[ppi_task_name],
|
| 73 |
)
|
| 74 |
all_models.register_model(
|
| 75 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox",
|
| 76 |
+
task_list=[toxicity_task_name]
|
| 77 |
)
|
| 78 |
all_models.register_model(
|
| 79 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda",
|
| 80 |
+
task_list=[fda_appr_task_name]
|
| 81 |
)
|
| 82 |
all_models.register_model(
|
| 83 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp",
|
| 84 |
+
task_list=[bbbp_task_name],
|
| 85 |
)
|
| 86 |
|
| 87 |
return all_tasks,all_models
|
mammal_demo/molnet_task.py
CHANGED
|
@@ -7,17 +7,18 @@ from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
|
|
| 7 |
|
| 8 |
|
| 9 |
class MolnetTask(MammalTask):
|
| 10 |
-
def __init__(self, model_dict, task_name="BBBP"):
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
self.description = f"MOLNET {task_name}"
|
| 13 |
self.examples = {
|
| 14 |
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2",
|
| 15 |
}
|
| 16 |
self.task_name=task_name
|
| 17 |
self.markup_text = """
|
| 18 |
-
# Mammal
|
| 19 |
|
| 20 |
-
Given a protein sequence and a drug (in SMILES), estimate the binding affinity.
|
| 21 |
"""
|
| 22 |
|
| 23 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker) -> dict:
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
class MolnetTask(MammalTask):
|
| 10 |
+
def __init__(self, model_dict, task_name="BBBP", name=None):
|
| 11 |
+
if name is None:
|
| 12 |
+
name=f"Molnet: {task_name}"
|
| 13 |
+
super().__init__(name=name, model_dict=model_dict)
|
| 14 |
self.description = f"MOLNET {task_name}"
|
| 15 |
self.examples = {
|
| 16 |
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2",
|
| 17 |
}
|
| 18 |
self.task_name=task_name
|
| 19 |
self.markup_text = """
|
| 20 |
+
# Mammal demonstration
|
| 21 |
|
|
|
|
| 22 |
"""
|
| 23 |
|
| 24 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker) -> dict:
|