Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,81 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import gc
|
4 |
-
import tempfile
|
5 |
-
|
6 |
import gradio as gr
|
|
|
|
|
7 |
|
8 |
from llama_index.core import Settings
|
9 |
-
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
|
|
10 |
from llama_index.llms.cohere import Cohere
|
11 |
from llama_index.embeddings.cohere import CohereEmbedding
|
12 |
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
13 |
-
from llama_index.core import PromptTemplate
|
14 |
-
|
15 |
-
# Your Cohere API Key
|
16 |
-
API_KEY = "ziEpsRreaJzBi5HUDap7gMecJWXX69O26Hf71Kxo"
|
17 |
-
|
18 |
-
# Global query engine
|
19 |
-
query_engine = None
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
gc.collect()
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
try:
|
28 |
-
base64_pdf = base64.b64encode(file.read()).decode("utf-8")
|
29 |
-
pdf_display = f"""<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600px" type="application/pdf">
|
30 |
-
</iframe>"""
|
31 |
-
return pdf_display
|
32 |
-
except Exception as e:
|
33 |
-
return f"Error displaying PDF: {e}"
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
global query_engine # Use global to modify the global query_engine variable
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
input_dir=temp_dir,
|
54 |
required_exts=[".pdf"],
|
55 |
recursive=True
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
-
# Setting up LLM & embedding model
|
60 |
-
llm = Cohere(api_key=API_KEY, model="command")
|
61 |
-
embed_model = CohereEmbedding(
|
62 |
-
cohere_api_key=API_KEY,
|
63 |
-
model_name="embed-english-v3.0",
|
64 |
-
input_type="search_query",
|
65 |
-
)
|
66 |
-
|
67 |
-
Settings.embed_model = embed_model
|
68 |
-
index = VectorStoreIndex.from_documents(docs, show_progress=True)
|
69 |
-
|
70 |
-
# Create a cohere reranker
|
71 |
-
cohere_rerank = CohereRerank(api_key=API_KEY)
|
72 |
-
|
73 |
-
# Create the query engine
|
74 |
-
Settings.llm = llm
|
75 |
-
query_engine = index.as_query_engine(streaming=True, node_postprocessors=[cohere_rerank])
|
76 |
-
|
77 |
-
# Customizing prompt template
|
78 |
-
qa_prompt_tmpl_str = (
|
79 |
-
"Context information is below.\n"
|
80 |
-
"---------------------\n"
|
81 |
-
"{context_str}\n"
|
82 |
-
"---------------------\n"
|
83 |
-
"Given the context information above, I want you to think step by step to answer the query in a crisp manner. "
|
84 |
-
"If you don't know the answer, say 'I don't know!'.\n"
|
85 |
-
"Query: {query_str}\n"
|
86 |
-
"Answer: "
|
87 |
-
)
|
88 |
-
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)
|
89 |
-
|
90 |
-
query_engine.update_prompts(
|
91 |
-
{"response_synthesizer:text_qa_template": qa_prompt_tmpl}
|
92 |
-
)
|
93 |
-
|
94 |
-
return query_engine, display_pdf(uploaded_file)
|
95 |
-
except Exception as e:
|
96 |
-
return None, f"An error occurred during PDF processing: {e}"
|
97 |
-
|
98 |
-
# Function to handle chat queries
|
99 |
-
def chat_with_pdf(prompt):
|
100 |
-
if not query_engine:
|
101 |
-
return "Please upload and process a PDF file first."
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
for chunk in streaming_response.response_gen:
|
108 |
-
full_response += chunk
|
109 |
-
|
110 |
-
return full_response
|
111 |
-
except Exception as e:
|
112 |
-
return f"An error occurred during the query process: {e}"
|
113 |
-
|
114 |
-
# Gradio Interface
|
115 |
-
with gr.Blocks() as demo:
|
116 |
-
gr.Markdown("# 🔍 Searchable Document Chatbot")
|
117 |
-
gr.Markdown("Upload your PDF document and start asking questions.")
|
118 |
-
|
119 |
-
pdf_file = gr.File(label="Upload your PDF file", file_types=[".pdf"])
|
120 |
-
pdf_preview = gr.HTML(label="PDF Preview")
|
121 |
-
|
122 |
-
process_button = gr.Button("Process PDF")
|
123 |
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import nest_asyncio
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from IPython.display import Markdown, display
|
6 |
|
7 |
from llama_index.core import Settings
|
8 |
+
from llama_index.core import VectorStoreIndex, ServiceContext, SimpleDirectoryReader
|
9 |
+
|
10 |
from llama_index.llms.cohere import Cohere
|
11 |
from llama_index.embeddings.cohere import CohereEmbedding
|
12 |
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# allows nested access to the event loop
|
15 |
+
nest_asyncio.apply()
|
|
|
16 |
|
17 |
+
# put your API key here, find one at: https://dashboard.cohere.com/api-keys
|
18 |
+
API_KEY = 'ziEpsRreaJzBi5HUDap7gMecJWXX69O26Hf71Kxo'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# setup llm & embedding model
|
21 |
+
llm = Cohere(api_key=API_KEY, model="command-r-plus")
|
|
|
22 |
|
23 |
+
embed_model = CohereEmbedding(
|
24 |
+
cohere_api_key=API_KEY,
|
25 |
+
model_name="embed-english-v3.0",
|
26 |
+
input_type="search_query",
|
27 |
+
)
|
28 |
|
29 |
+
# Function to load data from uploaded PDF
|
30 |
+
def process_pdfs(pdf_files):
|
31 |
+
# Create a temporary directory to store the uploaded PDFs
|
32 |
+
temp_dir = 'temp_pdf_directory'
|
33 |
+
os.makedirs(temp_dir, exist_ok=True)
|
34 |
+
|
35 |
+
# Save uploaded files to the temporary directory
|
36 |
+
for file in pdf_files:
|
37 |
+
file_path = os.path.join(temp_dir, file.name)
|
38 |
+
with open(file_path, 'wb') as f:
|
39 |
+
f.write(file.read())
|
40 |
+
|
41 |
+
# Load data from the temporary directory
|
42 |
+
loader = SimpleDirectoryReader(
|
43 |
input_dir=temp_dir,
|
44 |
required_exts=[".pdf"],
|
45 |
recursive=True
|
46 |
)
|
47 |
+
docs = loader.load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Create an index over loaded data
|
50 |
+
Settings.embed_model = embed_model
|
51 |
+
index = VectorStoreIndex.from_documents(docs, show_progress=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Create a cohere reranker
|
54 |
+
cohere_rerank = CohereRerank(api_key=API_KEY)
|
55 |
|
56 |
+
# Create the query engine, where we use a cohere reranker on the fetched nodes
|
57 |
+
Settings.llm = llm
|
58 |
+
query_engine = index.as_query_engine(node_postprocessors=[cohere_rerank])
|
59 |
+
|
60 |
+
return index, query_engine
|
61 |
+
|
62 |
+
# Query function
|
63 |
+
def query_pdfs(pdf_files, question):
|
64 |
+
index, query_engine = process_pdfs(pdf_files)
|
65 |
+
response = query_engine.query(question)
|
66 |
+
return str(response)
|
67 |
+
|
68 |
+
# Create Gradio interface
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=query_pdfs,
|
71 |
+
inputs=[
|
72 |
+
gr.inputs.File(label="Upload PDF Files", type="file", multiple=True),
|
73 |
+
gr.inputs.Textbox(label="Ask a Question", placeholder="Enter your question here...")
|
74 |
+
],
|
75 |
+
outputs="text",
|
76 |
+
title="PDF Query System",
|
77 |
+
description="Upload PDF files and ask questions to extract information from them."
|
78 |
+
)
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
iface.launch()
|