Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,26 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Define functions for each tool
|
18 |
def personalized_learning_assistant(topic):
|
@@ -22,7 +30,7 @@ def personalized_learning_assistant(topic):
|
|
22 |
"Explain machine learning. Example: Machine learning involves algorithms that improve through experience."
|
23 |
]
|
24 |
prompt = f"Here are some examples of explanations:\n\n{examples}\n\nNow, explain the topic: {topic}"
|
25 |
-
return
|
26 |
|
27 |
def ai_coding_mentor(code_snippet):
|
28 |
examples = [
|
@@ -30,7 +38,7 @@ def ai_coding_mentor(code_snippet):
|
|
30 |
"Review this code:\n\nCode: 'def add(a, b): return a + b'\nSuggestion: Add type hints for better readability."
|
31 |
]
|
32 |
prompt = f"Here are some examples of code reviews:\n\n{examples}\n\nReview the following code snippet:\n{code_snippet}"
|
33 |
-
return
|
34 |
|
35 |
def smart_document_summarizer(document_text):
|
36 |
examples = [
|
@@ -38,7 +46,7 @@ def smart_document_summarizer(document_text):
|
|
38 |
"Summarize this passage:\n\nText: 'The global climate change crisis necessitates urgent action to reduce carbon emissions.'\nSummary: 'Immediate action is needed to tackle climate change.'"
|
39 |
]
|
40 |
prompt = f"Here are some examples of summaries:\n\n{examples}\n\nSummarize this document:\n{document_text}"
|
41 |
-
return
|
42 |
|
43 |
def interactive_study_planner(exam_schedule):
|
44 |
examples = [
|
@@ -46,7 +54,7 @@ def interactive_study_planner(exam_schedule):
|
|
46 |
"Generate a study plan for:\n\nSchedule: 'Exams in 2 weeks'\nPlan: 'Focus on subjects with more weight and review daily.'"
|
47 |
]
|
48 |
prompt = f"Here are some examples of study plans:\n\n{examples}\n\nCreate a study plan for the following schedule:\n{exam_schedule}"
|
49 |
-
return
|
50 |
|
51 |
def real_time_qa_support(question):
|
52 |
examples = [
|
@@ -54,7 +62,7 @@ def real_time_qa_support(question):
|
|
54 |
"Provide an explanation for:\n\nQuestion: 'What is photosynthesis?'\nAnswer: 'Photosynthesis is the process by which plants convert light energy into chemical energy.'"
|
55 |
]
|
56 |
prompt = f"Here are some examples of Q&A responses:\n\n{examples}\n\nAnswer the following question:\n{question}"
|
57 |
-
return
|
58 |
|
59 |
def mental_health_check_in(feelings):
|
60 |
examples = [
|
@@ -62,7 +70,7 @@ def mental_health_check_in(feelings):
|
|
62 |
"Offer support for:\n\nFeeling: 'Feeling overwhelmed'\nAdvice: 'Consider relaxation techniques and seek support from friends or a counselor.'"
|
63 |
]
|
64 |
prompt = f"Here are some examples of mental health advice:\n\n{examples}\n\nProvide advice for:\n{feelings}"
|
65 |
-
return
|
66 |
|
67 |
# Define Streamlit app
|
68 |
st.set_page_config(page_title="EduNexus", page_icon=":book:", layout="wide")
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from groq import Groq
|
4 |
|
5 |
+
# Set the Groq API key
|
6 |
+
os.environ["GROQ_API_KEY"] = "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"
|
|
|
|
|
7 |
|
8 |
+
# Initialize Groq client
|
9 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
10 |
+
|
11 |
+
# Define the LLaMA model to be used
|
12 |
+
MODEL_NAME = "llama3-8b-8192"
|
13 |
+
|
14 |
+
# Function to call Groq API
|
15 |
+
def call_groq_api(prompt):
|
16 |
+
try:
|
17 |
+
chat_completion = client.chat.completions.create(
|
18 |
+
messages=[{"role": "user", "content": prompt}],
|
19 |
+
model=MODEL_NAME
|
20 |
+
)
|
21 |
+
return chat_completion.choices[0].message.content
|
22 |
+
except Exception as e:
|
23 |
+
return f"Error: {str(e)}"
|
24 |
|
25 |
# Define functions for each tool
|
26 |
def personalized_learning_assistant(topic):
|
|
|
30 |
"Explain machine learning. Example: Machine learning involves algorithms that improve through experience."
|
31 |
]
|
32 |
prompt = f"Here are some examples of explanations:\n\n{examples}\n\nNow, explain the topic: {topic}"
|
33 |
+
return call_groq_api(prompt)
|
34 |
|
35 |
def ai_coding_mentor(code_snippet):
|
36 |
examples = [
|
|
|
38 |
"Review this code:\n\nCode: 'def add(a, b): return a + b'\nSuggestion: Add type hints for better readability."
|
39 |
]
|
40 |
prompt = f"Here are some examples of code reviews:\n\n{examples}\n\nReview the following code snippet:\n{code_snippet}"
|
41 |
+
return call_groq_api(prompt)
|
42 |
|
43 |
def smart_document_summarizer(document_text):
|
44 |
examples = [
|
|
|
46 |
"Summarize this passage:\n\nText: 'The global climate change crisis necessitates urgent action to reduce carbon emissions.'\nSummary: 'Immediate action is needed to tackle climate change.'"
|
47 |
]
|
48 |
prompt = f"Here are some examples of summaries:\n\n{examples}\n\nSummarize this document:\n{document_text}"
|
49 |
+
return call_groq_api(prompt)
|
50 |
|
51 |
def interactive_study_planner(exam_schedule):
|
52 |
examples = [
|
|
|
54 |
"Generate a study plan for:\n\nSchedule: 'Exams in 2 weeks'\nPlan: 'Focus on subjects with more weight and review daily.'"
|
55 |
]
|
56 |
prompt = f"Here are some examples of study plans:\n\n{examples}\n\nCreate a study plan for the following schedule:\n{exam_schedule}"
|
57 |
+
return call_groq_api(prompt)
|
58 |
|
59 |
def real_time_qa_support(question):
|
60 |
examples = [
|
|
|
62 |
"Provide an explanation for:\n\nQuestion: 'What is photosynthesis?'\nAnswer: 'Photosynthesis is the process by which plants convert light energy into chemical energy.'"
|
63 |
]
|
64 |
prompt = f"Here are some examples of Q&A responses:\n\n{examples}\n\nAnswer the following question:\n{question}"
|
65 |
+
return call_groq_api(prompt)
|
66 |
|
67 |
def mental_health_check_in(feelings):
|
68 |
examples = [
|
|
|
70 |
"Offer support for:\n\nFeeling: 'Feeling overwhelmed'\nAdvice: 'Consider relaxation techniques and seek support from friends or a counselor.'"
|
71 |
]
|
72 |
prompt = f"Here are some examples of mental health advice:\n\n{examples}\n\nProvide advice for:\n{feelings}"
|
73 |
+
return call_groq_api(prompt)
|
74 |
|
75 |
# Define Streamlit app
|
76 |
st.set_page_config(page_title="EduNexus", page_icon=":book:", layout="wide")
|