ibrahim313 commited on
Commit
6b5a77a
Β·
verified Β·
1 Parent(s): 521cb34

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -5
README.md CHANGED
@@ -1,12 +1,82 @@
1
  ---
2
- title: Unet Adam Diceloss
3
- emoji: ⚑
4
  colorFrom: blue
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 5.34.2
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Polyp Detection AI
3
+ emoji: πŸ₯
4
  colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.15.0
8
  app_file: app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
+ # πŸ₯ AI-Powered Polyp Detection System
14
+
15
+ An intelligent medical imaging system that uses deep learning to detect colorectal polyps in colonoscopy images.
16
+
17
+ ## 🎯 Features
18
+
19
+ - **Real-time polyp detection** using U-Net deep learning architecture
20
+ - **Visual segmentation** with overlay highlighting detected regions
21
+ - **Quantitative analysis** providing polyp coverage percentages
22
+ - **Medical-grade interface** designed for healthcare applications
23
+ - **Adjustable sensitivity** with detection threshold controls
24
+
25
+ ## πŸ”¬ Model Details
26
+
27
+ - **Model Repository:** [ibrahim313/unet-adam-diceloss](https://huggingface.co/ibrahim313/unet-adam-diceloss)
28
+ - **Architecture:** U-Net with 32 base channels
29
+ - **Training Dataset:** Kvasir-SEG (1000 polyp images)
30
+ - **Framework:** PyTorch
31
+ - **Input Size:** 384Γ—384 pixels
32
+ - **Output:** Binary segmentation mask
33
+
34
+ ## πŸ“Š Performance
35
+
36
+ The model achieves excellent performance on the Kvasir-SEG dataset:
37
+ - High sensitivity for polyp detection
38
+ - Clinically relevant segmentation accuracy
39
+ - Robust performance across various image qualities
40
+
41
+ ## πŸš€ Usage
42
+
43
+ 1. Upload a colonoscopy image
44
+ 2. Adjust detection threshold if needed (0.1 - 0.9)
45
+ 3. Click "πŸ” Analyze for Polyps"
46
+ 4. Review the results and segmentation overlay
47
+
48
+ ## πŸ”§ Technical Implementation
49
+
50
+ - **Deep Learning:** U-Net encoder-decoder architecture
51
+ - **Preprocessing:** Albumentations (resize, normalize)
52
+ - **Inference:** PyTorch with CPU optimization
53
+ - **Interface:** Gradio for user-friendly interaction
54
+ - **Deployment:** Hugging Face Spaces
55
+
56
+ ## ⚠️ Medical Disclaimer
57
+
58
+ This AI system is intended for **research and educational purposes only**. It should not be used as a substitute for professional medical diagnosis. Always consult qualified healthcare professionals for clinical decisions.
59
+
60
+ ## πŸ“ Model Information
61
+
62
+ The underlying model was trained using:
63
+ - **Loss Function:** Dice Loss
64
+ - **Optimizer:** Adam
65
+ - **Training Epochs:** 100
66
+ - **Validation Strategy:** Train/Validation/Test split
67
+
68
+ ## 🀝 Contributing
69
+
70
+ This project is open for improvements and contributions. Feel free to:
71
+ - Report issues or bugs
72
+ - Suggest enhancements
73
+ - Share feedback on medical accuracy
74
+ - Contribute to model improvements
75
+
76
+ ## πŸ“ž Contact
77
+
78
+ For questions or medical AI collaboration opportunities, please reach out through Hugging Face.
79
+
80
+ ---
81
+
82
+ *Built with ❀️ for advancing medical AI research*