Upload 7 files
Browse files- CLIP.py +66 -0
- app.py +75 -0
- best.pt +3 -0
- config.py +32 -0
- implement.py +332 -0
- main.py +115 -0
- requirements.txt +14 -0
CLIP.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
import config as CFG
|
| 6 |
+
from modules import ImageEncoder, TextEncoder, ProjectionHead
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class CLIPModel(nn.Module):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
temperature=CFG.temperature,
|
| 13 |
+
image_embedding=CFG.image_embedding,
|
| 14 |
+
text_embedding=CFG.text_embedding,
|
| 15 |
+
):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.image_encoder = ImageEncoder()
|
| 18 |
+
self.text_encoder = TextEncoder()
|
| 19 |
+
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
|
| 20 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
| 21 |
+
self.temperature = temperature
|
| 22 |
+
|
| 23 |
+
def forward(self, batch):
|
| 24 |
+
# Getting Image and Text Features
|
| 25 |
+
image_features = self.image_encoder(batch["image"])
|
| 26 |
+
text_features = self.text_encoder(
|
| 27 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
| 28 |
+
)
|
| 29 |
+
# Getting Image and Text Embeddings (with same dimension)
|
| 30 |
+
image_embeddings = self.image_projection(image_features)
|
| 31 |
+
text_embeddings = self.text_projection(text_features)
|
| 32 |
+
|
| 33 |
+
# Calculating the Loss
|
| 34 |
+
logits = (text_embeddings @ image_embeddings.T) / self.temperature
|
| 35 |
+
images_similarity = image_embeddings @ image_embeddings.T
|
| 36 |
+
texts_similarity = text_embeddings @ text_embeddings.T
|
| 37 |
+
targets = F.softmax(
|
| 38 |
+
(images_similarity + texts_similarity) / 2 * self.temperature, dim=-1
|
| 39 |
+
)
|
| 40 |
+
texts_loss = cross_entropy(logits, targets, reduction='none')
|
| 41 |
+
images_loss = cross_entropy(logits.T, targets.T, reduction='none')
|
| 42 |
+
loss = (images_loss + texts_loss) / 2.0 # shape: (batch_size)
|
| 43 |
+
return loss.mean()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def cross_entropy(preds, targets, reduction='none'):
|
| 47 |
+
log_softmax = nn.LogSoftmax(dim=-1)
|
| 48 |
+
loss = (-targets * log_softmax(preds)).sum(1)
|
| 49 |
+
if reduction == "none":
|
| 50 |
+
return loss
|
| 51 |
+
elif reduction == "mean":
|
| 52 |
+
return loss.mean()
|
| 53 |
+
|
| 54 |
+
if __name__ == '__main__':
|
| 55 |
+
images = torch.randn(8, 3, 224, 224)
|
| 56 |
+
input_ids = torch.randint(5, 300, size=(8, 25))
|
| 57 |
+
attention_mask = torch.ones(8, 25)
|
| 58 |
+
batch = {
|
| 59 |
+
'image': images,
|
| 60 |
+
'input_ids': input_ids,
|
| 61 |
+
'attention_mask': attention_mask
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
CLIP = CLIPModel()
|
| 65 |
+
loss = CLIP(batch)
|
| 66 |
+
print("")
|
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import gc
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
from transformers import DistilBertTokenizer
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from implement import *
|
| 10 |
+
import config as CFG
|
| 11 |
+
from main import build_loaders
|
| 12 |
+
from CLIP import CLIPModel
|
| 13 |
+
import os
|
| 14 |
+
os.environ['HTTPS_PROXY']="http://185.46.212.90:80/"
|
| 15 |
+
os.environ['HTTP_PROXY']="http://185.46.212.90:80/"
|
| 16 |
+
with gr.Blocks(css="style.css") as demo:
|
| 17 |
+
def get_image_embeddings(valid_df, model_path):
|
| 18 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
| 19 |
+
valid_loader = build_loaders(valid_df, tokenizer, mode="valid")
|
| 20 |
+
|
| 21 |
+
model = CLIPModel().to(CFG.device)
|
| 22 |
+
model.load_state_dict(torch.load(model_path, map_location=CFG.device))
|
| 23 |
+
model.eval()
|
| 24 |
+
|
| 25 |
+
valid_image_embeddings = []
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
for batch in tqdm(valid_loader):
|
| 28 |
+
image_features = model.image_encoder(batch["image"].to(CFG.device))
|
| 29 |
+
image_embeddings = model.image_projection(image_features)
|
| 30 |
+
valid_image_embeddings.append(image_embeddings)
|
| 31 |
+
return model, torch.cat(valid_image_embeddings)
|
| 32 |
+
|
| 33 |
+
_, valid_df = make_train_valid_dfs()
|
| 34 |
+
model, image_embeddings = get_image_embeddings(valid_df, "best.pt")
|
| 35 |
+
|
| 36 |
+
def find_matches(query, n=9):
|
| 37 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
| 38 |
+
encoded_query = tokenizer([query])
|
| 39 |
+
batch = {
|
| 40 |
+
key: torch.tensor(values).to(CFG.device)
|
| 41 |
+
for key, values in encoded_query.items()
|
| 42 |
+
}
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
text_features = model.text_encoder(
|
| 45 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
| 46 |
+
)
|
| 47 |
+
text_embeddings = model.text_projection(text_features)
|
| 48 |
+
|
| 49 |
+
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
|
| 50 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
| 51 |
+
dot_similarity = text_embeddings_n @ image_embeddings_n.T
|
| 52 |
+
|
| 53 |
+
_, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
|
| 54 |
+
matches = [valid_df['image'].values[idx] for idx in indices[::5]]
|
| 55 |
+
|
| 56 |
+
images = []
|
| 57 |
+
for match in matches:
|
| 58 |
+
image = cv2.imread(f"{CFG.image_path}/{match}")
|
| 59 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 60 |
+
# images.append(image)
|
| 61 |
+
|
| 62 |
+
return image
|
| 63 |
+
with gr.Row():
|
| 64 |
+
textbox = gr.Textbox(label = "Enter a query to find matching images using a CLIP model.")
|
| 65 |
+
image = gr.Image(type="numpy")
|
| 66 |
+
|
| 67 |
+
button = gr.Button("Press")
|
| 68 |
+
button.click(
|
| 69 |
+
fn = find_matches,
|
| 70 |
+
inputs=textbox,
|
| 71 |
+
outputs=image
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Create Gradio interface
|
| 75 |
+
demo.launch(share=True)
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7643c035e44a5bee1abd2dd82ecc7232803751b9fc87c00d456f848ca1d0e385
|
| 3 |
+
size 363250624
|
config.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
debug = True
|
| 4 |
+
image_path = "/raid/users/mohammadibrahim-st/TSAI/OpenAI-CLIP/Flicker-8k/Images"
|
| 5 |
+
captions_path = "/raid/users/mohammadibrahim-st/TSAI/OpenAI-CLIP/Flicker-8k"
|
| 6 |
+
batch_size = 20
|
| 7 |
+
num_workers = 0
|
| 8 |
+
lr = 1e-3
|
| 9 |
+
weight_decay = 1e-3
|
| 10 |
+
patience = 2
|
| 11 |
+
factor = 0.5
|
| 12 |
+
epochs = 5
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
|
| 15 |
+
model_name = 'resnet50'
|
| 16 |
+
image_embedding = 2048
|
| 17 |
+
text_encoder_model = "/raid/users/mohammadibrahim-st/Models/BertDistil"
|
| 18 |
+
text_embedding = 768
|
| 19 |
+
text_tokenizer = "/raid/users/mohammadibrahim-st/Models/BertDistil"
|
| 20 |
+
max_length = 200
|
| 21 |
+
|
| 22 |
+
pretrained = False # for both image encoder and text encoder
|
| 23 |
+
trainable = False # for both image encoder and text encoder
|
| 24 |
+
temperature = 1.0
|
| 25 |
+
|
| 26 |
+
# image size
|
| 27 |
+
size = 224
|
| 28 |
+
|
| 29 |
+
# for projection head; used for both image and text encoders
|
| 30 |
+
num_projection_layers = 1
|
| 31 |
+
projection_dim = 256
|
| 32 |
+
dropout = 0.1
|
implement.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import gc
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import itertools
|
| 7 |
+
from tqdm.autonotebook import tqdm
|
| 8 |
+
import albumentations as A
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import timm
|
| 14 |
+
from transformers import DistilBertModel, DistilBertConfig, DistilBertTokenizer
|
| 15 |
+
import os
|
| 16 |
+
os.environ['HTTPS_PROXY']="http://185.46.212.90:80/"
|
| 17 |
+
os.environ['HTTP_PROXY']="http://185.46.212.90:80/"
|
| 18 |
+
class CFG:
|
| 19 |
+
debug = False
|
| 20 |
+
image_path = "/raid/users/mohammadibrahim-st/TSAI/OpenAI-CLIP/Flicker-8k/Images"
|
| 21 |
+
captions_path = "/raid/users/mohammadibrahim-st/TSAI/OpenAI-CLIP/Flicker-8k"
|
| 22 |
+
batch_size = 30
|
| 23 |
+
num_workers = 4
|
| 24 |
+
head_lr = 1e-3
|
| 25 |
+
image_encoder_lr = 1e-4
|
| 26 |
+
text_encoder_lr = 1e-5
|
| 27 |
+
weight_decay = 1e-3
|
| 28 |
+
patience = 1
|
| 29 |
+
factor = 0.8
|
| 30 |
+
epochs = 4
|
| 31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
|
| 33 |
+
model_name = 'resnet50'
|
| 34 |
+
image_embedding = 2048
|
| 35 |
+
text_encoder_model = "/raid/users/mohammadibrahim-st/Models/BertDistil"
|
| 36 |
+
text_embedding = 768
|
| 37 |
+
text_tokenizer = "/raid/users/mohammadibrahim-st/Models/BertDistil"
|
| 38 |
+
max_length = 200
|
| 39 |
+
|
| 40 |
+
pretrained = True # for both image encoder and text encoder
|
| 41 |
+
trainable = True # for both image encoder and text encoder
|
| 42 |
+
temperature = 1.0
|
| 43 |
+
|
| 44 |
+
# image size
|
| 45 |
+
size = 224
|
| 46 |
+
|
| 47 |
+
# for projection head; used for both image and text encoders
|
| 48 |
+
num_projection_layers = 1
|
| 49 |
+
projection_dim = 256
|
| 50 |
+
dropout = 0.1
|
| 51 |
+
|
| 52 |
+
class AvgMeter:
|
| 53 |
+
def __init__(self, name="Metric"):
|
| 54 |
+
self.name = name
|
| 55 |
+
self.reset()
|
| 56 |
+
|
| 57 |
+
def reset(self):
|
| 58 |
+
self.avg, self.sum, self.count = [0] * 3
|
| 59 |
+
|
| 60 |
+
def update(self, val, count=1):
|
| 61 |
+
self.count += count
|
| 62 |
+
self.sum += val * count
|
| 63 |
+
self.avg = self.sum / self.count
|
| 64 |
+
|
| 65 |
+
def __repr__(self):
|
| 66 |
+
text = f"{self.name}: {self.avg:.4f}"
|
| 67 |
+
return text
|
| 68 |
+
|
| 69 |
+
def get_lr(optimizer):
|
| 70 |
+
for param_group in optimizer.param_groups:
|
| 71 |
+
return param_group["lr"]
|
| 72 |
+
|
| 73 |
+
class CLIPDataset(torch.utils.data.Dataset):
|
| 74 |
+
def __init__(self, image_filenames, captions, tokenizer, transforms):
|
| 75 |
+
"""
|
| 76 |
+
image_filenames and cpations must have the same length; so, if there are
|
| 77 |
+
multiple captions for each image, the image_filenames must have repetitive
|
| 78 |
+
file names
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
self.image_filenames = image_filenames
|
| 82 |
+
self.captions = list(captions)
|
| 83 |
+
self.encoded_captions = tokenizer(
|
| 84 |
+
list(captions), padding=True, truncation=True, max_length=CFG.max_length
|
| 85 |
+
)
|
| 86 |
+
self.transforms = transforms
|
| 87 |
+
|
| 88 |
+
def __getitem__(self, idx):
|
| 89 |
+
item = {
|
| 90 |
+
key: torch.tensor(values[idx])
|
| 91 |
+
for key, values in self.encoded_captions.items()
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
image = cv2.imread(f"{CFG.image_path}/{self.image_filenames[idx]}")
|
| 95 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 96 |
+
image = self.transforms(image=image)['image']
|
| 97 |
+
item['image'] = torch.tensor(image).permute(2, 0, 1).float()
|
| 98 |
+
item['caption'] = self.captions[idx]
|
| 99 |
+
|
| 100 |
+
return item
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def __len__(self):
|
| 104 |
+
return len(self.captions)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def get_transforms(mode="train"):
|
| 109 |
+
if mode == "train":
|
| 110 |
+
return A.Compose(
|
| 111 |
+
[
|
| 112 |
+
A.Resize(CFG.size, CFG.size, always_apply=True),
|
| 113 |
+
A.Normalize(max_pixel_value=255.0, always_apply=True),
|
| 114 |
+
]
|
| 115 |
+
)
|
| 116 |
+
else:
|
| 117 |
+
return A.Compose(
|
| 118 |
+
[
|
| 119 |
+
A.Resize(CFG.size, CFG.size, always_apply=True),
|
| 120 |
+
A.Normalize(max_pixel_value=255.0, always_apply=True),
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
class ImageEncoder(nn.Module):
|
| 125 |
+
"""
|
| 126 |
+
Encode images to a fixed size vector
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
def __init__(
|
| 130 |
+
self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
|
| 131 |
+
):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.model = timm.create_model(
|
| 134 |
+
model_name, pretrained, num_classes=0, global_pool="avg"
|
| 135 |
+
)
|
| 136 |
+
for p in self.model.parameters():
|
| 137 |
+
p.requires_grad = trainable
|
| 138 |
+
|
| 139 |
+
def forward(self, x):
|
| 140 |
+
return self.model(x)
|
| 141 |
+
|
| 142 |
+
class TextEncoder(nn.Module):
|
| 143 |
+
def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
|
| 144 |
+
super().__init__()
|
| 145 |
+
if pretrained:
|
| 146 |
+
self.model = DistilBertModel.from_pretrained(model_name, use_safetensors=True) #added use_safetensor
|
| 147 |
+
else:
|
| 148 |
+
self.model = DistilBertModel(config=DistilBertConfig())
|
| 149 |
+
|
| 150 |
+
for p in self.model.parameters():
|
| 151 |
+
p.requires_grad = trainable
|
| 152 |
+
|
| 153 |
+
# we are using the CLS token hidden representation as the sentence's embedding
|
| 154 |
+
self.target_token_idx = 0
|
| 155 |
+
|
| 156 |
+
def forward(self, input_ids, attention_mask):
|
| 157 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
| 158 |
+
last_hidden_state = output.last_hidden_state
|
| 159 |
+
return last_hidden_state[:, self.target_token_idx, :]
|
| 160 |
+
|
| 161 |
+
class ProjectionHead(nn.Module):
|
| 162 |
+
def __init__(
|
| 163 |
+
self,
|
| 164 |
+
embedding_dim,
|
| 165 |
+
projection_dim=CFG.projection_dim,
|
| 166 |
+
dropout=CFG.dropout
|
| 167 |
+
):
|
| 168 |
+
super().__init__()
|
| 169 |
+
self.projection = nn.Linear(embedding_dim, projection_dim)
|
| 170 |
+
self.gelu = nn.GELU()
|
| 171 |
+
self.fc = nn.Linear(projection_dim, projection_dim)
|
| 172 |
+
self.dropout = nn.Dropout(dropout)
|
| 173 |
+
self.layer_norm = nn.LayerNorm(projection_dim)
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
projected = self.projection(x)
|
| 177 |
+
x = self.gelu(projected)
|
| 178 |
+
x = self.fc(x)
|
| 179 |
+
x = self.dropout(x)
|
| 180 |
+
x = x + projected
|
| 181 |
+
x = self.layer_norm(x)
|
| 182 |
+
return x
|
| 183 |
+
|
| 184 |
+
class CLIPModel(nn.Module):
|
| 185 |
+
def __init__(
|
| 186 |
+
self,
|
| 187 |
+
temperature=CFG.temperature,
|
| 188 |
+
image_embedding=CFG.image_embedding,
|
| 189 |
+
text_embedding=CFG.text_embedding,
|
| 190 |
+
):
|
| 191 |
+
super().__init__()
|
| 192 |
+
self.image_encoder = ImageEncoder()
|
| 193 |
+
self.text_encoder = TextEncoder()
|
| 194 |
+
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
|
| 195 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
| 196 |
+
self.temperature = temperature
|
| 197 |
+
|
| 198 |
+
def forward(self, batch):
|
| 199 |
+
# Getting Image and Text Features
|
| 200 |
+
image_features = self.image_encoder(batch["image"])
|
| 201 |
+
text_features = self.text_encoder(
|
| 202 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
| 203 |
+
)
|
| 204 |
+
# Getting Image and Text Embeddings (with same dimension)
|
| 205 |
+
image_embeddings = self.image_projection(image_features)
|
| 206 |
+
text_embeddings = self.text_projection(text_features)
|
| 207 |
+
|
| 208 |
+
# Calculating the Loss
|
| 209 |
+
logits = (text_embeddings @ image_embeddings.T) / self.temperature
|
| 210 |
+
images_similarity = image_embeddings @ image_embeddings.T
|
| 211 |
+
texts_similarity = text_embeddings @ text_embeddings.T
|
| 212 |
+
targets = F.softmax(
|
| 213 |
+
(images_similarity + texts_similarity) / 2 * self.temperature, dim=-1
|
| 214 |
+
)
|
| 215 |
+
texts_loss = cross_entropy(logits, targets, reduction='none')
|
| 216 |
+
images_loss = cross_entropy(logits.T, targets.T, reduction='none')
|
| 217 |
+
loss = (images_loss + texts_loss) / 2.0 # shape: (batch_size)
|
| 218 |
+
return loss.mean()
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def cross_entropy(preds, targets, reduction='none'):
|
| 222 |
+
log_softmax = nn.LogSoftmax(dim=-1)
|
| 223 |
+
loss = (-targets * log_softmax(preds)).sum(1)
|
| 224 |
+
if reduction == "none":
|
| 225 |
+
return loss
|
| 226 |
+
elif reduction == "mean":
|
| 227 |
+
return loss.mean()
|
| 228 |
+
|
| 229 |
+
def make_train_valid_dfs():
|
| 230 |
+
dataframe = pd.read_csv(f"{CFG.captions_path}/captions.csv")
|
| 231 |
+
dataframe['id'] = dataframe.index #new added
|
| 232 |
+
max_id = dataframe["id"].max() + 1 if not CFG.debug else 100
|
| 233 |
+
image_ids = np.arange(0, max_id)
|
| 234 |
+
np.random.seed(42)
|
| 235 |
+
valid_ids = np.random.choice(
|
| 236 |
+
image_ids, size=int(0.2 * len(image_ids)), replace=False
|
| 237 |
+
)
|
| 238 |
+
train_ids = [id_ for id_ in image_ids if id_ not in valid_ids]
|
| 239 |
+
train_dataframe = dataframe[dataframe["id"].isin(train_ids)].reset_index(drop=True)
|
| 240 |
+
valid_dataframe = dataframe[dataframe["id"].isin(valid_ids)].reset_index(drop=True)
|
| 241 |
+
return train_dataframe, valid_dataframe
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def build_loaders(dataframe, tokenizer, mode):
|
| 245 |
+
transforms = get_transforms(mode=mode)
|
| 246 |
+
dataset = CLIPDataset(
|
| 247 |
+
dataframe["image"].values,
|
| 248 |
+
dataframe["caption"].values,
|
| 249 |
+
tokenizer=tokenizer,
|
| 250 |
+
transforms=transforms,
|
| 251 |
+
)
|
| 252 |
+
dataloader = torch.utils.data.DataLoader(
|
| 253 |
+
dataset,
|
| 254 |
+
batch_size=CFG.batch_size,
|
| 255 |
+
num_workers=CFG.num_workers,
|
| 256 |
+
shuffle=True if mode == "train" else False,
|
| 257 |
+
)
|
| 258 |
+
return dataloader
|
| 259 |
+
|
| 260 |
+
def train_epoch(model, train_loader, optimizer, lr_scheduler, step):
|
| 261 |
+
loss_meter = AvgMeter()
|
| 262 |
+
tqdm_object = tqdm(train_loader, total=len(train_loader))
|
| 263 |
+
for batch in tqdm_object:
|
| 264 |
+
batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}
|
| 265 |
+
loss = model(batch)
|
| 266 |
+
optimizer.zero_grad()
|
| 267 |
+
loss.backward()
|
| 268 |
+
optimizer.step()
|
| 269 |
+
if step == "batch":
|
| 270 |
+
lr_scheduler.step()
|
| 271 |
+
|
| 272 |
+
count = batch["image"].size(0)
|
| 273 |
+
loss_meter.update(loss.item(), count)
|
| 274 |
+
|
| 275 |
+
tqdm_object.set_postfix(train_loss=loss_meter.avg, lr=get_lr(optimizer))
|
| 276 |
+
return loss_meter
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def valid_epoch(model, valid_loader):
|
| 280 |
+
loss_meter = AvgMeter()
|
| 281 |
+
|
| 282 |
+
tqdm_object = tqdm(valid_loader, total=len(valid_loader))
|
| 283 |
+
for batch in tqdm_object:
|
| 284 |
+
batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}
|
| 285 |
+
loss = model(batch)
|
| 286 |
+
|
| 287 |
+
count = batch["image"].size(0)
|
| 288 |
+
loss_meter.update(loss.item(), count)
|
| 289 |
+
|
| 290 |
+
tqdm_object.set_postfix(valid_loss=loss_meter.avg)
|
| 291 |
+
return loss_meter
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def main():
|
| 295 |
+
train_df, valid_df = make_train_valid_dfs()
|
| 296 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
| 297 |
+
train_loader = build_loaders(train_df, tokenizer, mode="train")
|
| 298 |
+
valid_loader = build_loaders(valid_df, tokenizer, mode="valid")
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
model = CLIPModel().to(CFG.device)
|
| 302 |
+
params = [
|
| 303 |
+
{"params": model.image_encoder.parameters(), "lr": CFG.image_encoder_lr},
|
| 304 |
+
{"params": model.text_encoder.parameters(), "lr": CFG.text_encoder_lr},
|
| 305 |
+
{"params": itertools.chain(
|
| 306 |
+
model.image_projection.parameters(), model.text_projection.parameters()
|
| 307 |
+
), "lr": CFG.head_lr, "weight_decay": CFG.weight_decay}
|
| 308 |
+
]
|
| 309 |
+
optimizer = torch.optim.AdamW(params, weight_decay=0.)
|
| 310 |
+
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 311 |
+
optimizer, mode="min", patience=CFG.patience, factor=CFG.factor
|
| 312 |
+
)
|
| 313 |
+
step = "epoch"
|
| 314 |
+
|
| 315 |
+
best_loss = float('inf')
|
| 316 |
+
for epoch in range(CFG.epochs):
|
| 317 |
+
print(f"Epoch: {epoch + 1}")
|
| 318 |
+
model.train()
|
| 319 |
+
train_loss = train_epoch(model, train_loader, optimizer, lr_scheduler, step)
|
| 320 |
+
model.eval()
|
| 321 |
+
with torch.no_grad():
|
| 322 |
+
valid_loss = valid_epoch(model, valid_loader)
|
| 323 |
+
|
| 324 |
+
if valid_loss.avg < best_loss:
|
| 325 |
+
best_loss = valid_loss.avg
|
| 326 |
+
torch.save(model.state_dict(), "best.pt")
|
| 327 |
+
print("Saved Best Model!")
|
| 328 |
+
|
| 329 |
+
lr_scheduler.step(valid_loss.avg)
|
| 330 |
+
|
| 331 |
+
if __name__ == "__main__":
|
| 332 |
+
main()
|
main.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
from transformers import DistilBertTokenizer
|
| 10 |
+
|
| 11 |
+
import config as CFG
|
| 12 |
+
from dataset import CLIPDataset, get_transforms
|
| 13 |
+
from CLIP import CLIPModel
|
| 14 |
+
from utils import AvgMeter, get_lr
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def make_train_valid_dfs():
|
| 18 |
+
dataframe = pd.read_csv(f"{CFG.captions_path}/captions.csv")
|
| 19 |
+
dataframe['id'] = dataframe.index #new added
|
| 20 |
+
max_id = dataframe["id"].max() + 1 if not CFG.debug else 100
|
| 21 |
+
image_ids = np.arange(0, max_id)
|
| 22 |
+
np.random.seed(42)
|
| 23 |
+
valid_ids = np.random.choice(
|
| 24 |
+
image_ids, size=int(0.2 * len(image_ids)), replace=False
|
| 25 |
+
)
|
| 26 |
+
train_ids = [id_ for id_ in image_ids if id_ not in valid_ids]
|
| 27 |
+
train_dataframe = dataframe[dataframe["id"].isin(train_ids)].reset_index(drop=True)
|
| 28 |
+
valid_dataframe = dataframe[dataframe["id"].isin(valid_ids)].reset_index(drop=True)
|
| 29 |
+
return train_dataframe, valid_dataframe
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def build_loaders(dataframe, tokenizer, mode):
|
| 33 |
+
transforms = get_transforms(mode=mode)
|
| 34 |
+
dataset = CLIPDataset(
|
| 35 |
+
dataframe["image"].values,
|
| 36 |
+
dataframe["caption"].values,
|
| 37 |
+
tokenizer=tokenizer,
|
| 38 |
+
transforms=transforms,
|
| 39 |
+
)
|
| 40 |
+
dataloader = torch.utils.data.DataLoader(
|
| 41 |
+
dataset,
|
| 42 |
+
batch_size=CFG.batch_size,
|
| 43 |
+
num_workers=CFG.num_workers,
|
| 44 |
+
shuffle=True if mode == "train" else False,
|
| 45 |
+
)
|
| 46 |
+
return dataloader
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def train_epoch(model, train_loader, optimizer, lr_scheduler, step):
|
| 50 |
+
loss_meter = AvgMeter()
|
| 51 |
+
tqdm_object = tqdm(train_loader, total=len(train_loader))
|
| 52 |
+
for batch in tqdm_object:
|
| 53 |
+
batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}
|
| 54 |
+
loss = model(batch)
|
| 55 |
+
optimizer.zero_grad()
|
| 56 |
+
loss.backward()
|
| 57 |
+
optimizer.step()
|
| 58 |
+
if step == "batch":
|
| 59 |
+
lr_scheduler.step()
|
| 60 |
+
|
| 61 |
+
count = batch["image"].size(0)
|
| 62 |
+
loss_meter.update(loss.item(), count)
|
| 63 |
+
|
| 64 |
+
tqdm_object.set_postfix(train_loss=loss_meter.avg, lr=get_lr(optimizer))
|
| 65 |
+
return loss_meter
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def valid_epoch(model, valid_loader):
|
| 69 |
+
loss_meter = AvgMeter()
|
| 70 |
+
|
| 71 |
+
tqdm_object = tqdm(valid_loader, total=len(valid_loader))
|
| 72 |
+
for batch in tqdm_object:
|
| 73 |
+
batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}
|
| 74 |
+
loss = model(batch)
|
| 75 |
+
|
| 76 |
+
count = batch["image"].size(0)
|
| 77 |
+
loss_meter.update(loss.item(), count)
|
| 78 |
+
|
| 79 |
+
tqdm_object.set_postfix(valid_loss=loss_meter.avg)
|
| 80 |
+
return loss_meter
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def main():
|
| 84 |
+
train_df, valid_df = make_train_valid_dfs()
|
| 85 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
| 86 |
+
train_loader = build_loaders(train_df, tokenizer, mode="train")
|
| 87 |
+
valid_loader = build_loaders(valid_df, tokenizer, mode="valid")
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
model = CLIPModel().to(CFG.device)
|
| 91 |
+
optimizer = torch.optim.AdamW(
|
| 92 |
+
model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay
|
| 93 |
+
)
|
| 94 |
+
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 95 |
+
optimizer, mode="min", patience=CFG.patience, factor=CFG.factor
|
| 96 |
+
)
|
| 97 |
+
step = "epoch"
|
| 98 |
+
|
| 99 |
+
best_loss = float('inf')
|
| 100 |
+
for epoch in range(CFG.epochs):
|
| 101 |
+
print(f"Epoch: {epoch + 1}")
|
| 102 |
+
model.train()
|
| 103 |
+
train_loss = train_epoch(model, train_loader, optimizer, lr_scheduler, step)
|
| 104 |
+
model.eval()
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
valid_loss = valid_epoch(model, valid_loader)
|
| 107 |
+
|
| 108 |
+
if valid_loss.avg < best_loss:
|
| 109 |
+
best_loss = valid_loss.avg
|
| 110 |
+
torch.save(model.state_dict(), "best2.pt")
|
| 111 |
+
print("Saved Best Model!")
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{\rtf1\ansi\ansicpg1252\cocoartf2709
|
| 2 |
+
\cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
|
| 3 |
+
{\colortbl;\red255\green255\blue255;}
|
| 4 |
+
{\*\expandedcolortbl;;}
|
| 5 |
+
\paperw11900\paperh16840\margl1440\margr1440\vieww11520\viewh8400\viewkind0
|
| 6 |
+
\pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0
|
| 7 |
+
|
| 8 |
+
\f0\fs24 \cf0 torch\
|
| 9 |
+
opencv-python\
|
| 10 |
+
matplotlib\
|
| 11 |
+
transformers\
|
| 12 |
+
tqdm\
|
| 13 |
+
\
|
| 14 |
+
}
|