Upload modules.py
Browse files- modules.py +70 -0
modules.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import timm
|
| 4 |
+
from transformers import DistilBertModel, DistilBertConfig
|
| 5 |
+
import config as CFG
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ImageEncoder(nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
Encode images to a fixed size vector
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
|
| 15 |
+
):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.model = timm.create_model(
|
| 18 |
+
model_name, pretrained, num_classes=0, global_pool="avg"
|
| 19 |
+
)
|
| 20 |
+
for p in self.model.parameters():
|
| 21 |
+
p.requires_grad = trainable
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
return self.model(x)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class TextEncoder(nn.Module):
|
| 28 |
+
def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
|
| 29 |
+
super().__init__()
|
| 30 |
+
if pretrained:
|
| 31 |
+
self.model = DistilBertModel.from_pretrained(model_name)
|
| 32 |
+
else:
|
| 33 |
+
self.model = DistilBertModel(config=DistilBertConfig())
|
| 34 |
+
|
| 35 |
+
for p in self.model.parameters():
|
| 36 |
+
p.requires_grad = trainable
|
| 37 |
+
|
| 38 |
+
# we are using the CLS token hidden representation as the sentence's embedding
|
| 39 |
+
self.target_token_idx = 0
|
| 40 |
+
|
| 41 |
+
def forward(self, input_ids, attention_mask):
|
| 42 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
| 43 |
+
last_hidden_state = output.last_hidden_state
|
| 44 |
+
return last_hidden_state[:, self.target_token_idx, :]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class ProjectionHead(nn.Module):
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
embedding_dim,
|
| 52 |
+
projection_dim=CFG.projection_dim,
|
| 53 |
+
dropout=CFG.dropout
|
| 54 |
+
):
|
| 55 |
+
super().__init__()
|
| 56 |
+
self.projection = nn.Linear(embedding_dim, projection_dim)
|
| 57 |
+
self.gelu = nn.GELU()
|
| 58 |
+
self.fc = nn.Linear(projection_dim, projection_dim)
|
| 59 |
+
self.dropout = nn.Dropout(dropout)
|
| 60 |
+
self.layer_norm = nn.LayerNorm(projection_dim)
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
projected = self.projection(x)
|
| 64 |
+
x = self.gelu(projected)
|
| 65 |
+
x = self.fc(x)
|
| 66 |
+
x = self.dropout(x)
|
| 67 |
+
x = x + projected
|
| 68 |
+
x = self.layer_norm(x)
|
| 69 |
+
return x
|
| 70 |
+
|