File size: 12,095 Bytes
c6d7b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
from transformers import GPT2Model, GPT2Config
from transformers.modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from transformers.models.gpt2.modeling_gpt2 import (
    GPT2Block, GPT2Attention, GPT2MLP
)
from torch import nn

class Cond_Attention(GPT2Attention):
    def __init__(self, nx, n_ctx, config, is_cross_attention=False):
        super(GPT2Attention, self).__init__()
        self.output_attentions = config.output_attentions
        n_state = nx
        assert n_state % config.n_head == 0
        self.embed_dim = config.n_embd
        self.num_heads = config.n_head
        self.head_dim = self.embed_dim // self.num_heads
        self.split_size = n_state
        self.scale_attn_weights = config.scale_attn_weights
        self.is_cross_attention = is_cross_attention
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.pruned_heads = set()
        self.c_z = Conv1D(n_state * 2, nx)
    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        attn_weights = torch.matmul(query, key.transpose(-1, -2))
        if self.scale_attn_weights:
            attn_weights = attn_weights / torch.full(
                [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
            )
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)
        return attn_output, attn_weights

    def forward(self, x, z, layer_past=None, attention_mask=None, head_mask=None, use_cache=True, output_attentions=False):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self._split_heads(query, self.num_heads, self.head_dim)
        key = self._split_heads(key, self.num_heads, self.head_dim)
        value = self._split_heads(value, self.num_heads, self.head_dim)
        if layer_past is not None:
            past_key, past_value = layer_past
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)
        if use_cache:
            present = (key, value)
        else:
            present = None

        z_conv = self.c_z(z)
        key_z, value_z = z_conv.split(self.split_size, dim=2)
        key_z = self._split_heads(key_z, self.num_heads, self.head_dim)
        value_z = self._split_heads(value_z, self.num_heads, self.head_dim)

        key = key_z 
        value = value_z
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
        attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)
        return outputs

class Cond_Block(GPT2Block):
    def __init__(self, config,activate_a = False,activate_v = False):
        super(GPT2Block, self).__init__()
        self.activate_a = activate_a
        self.activate_v = activate_v
        nx = config.n_embd
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        
        self.attn =  Cond_Attention(nx,config.n_ctx,config)
        
        self.attn_a =None if not self.activate_a else Cond_Attention(nx,config.n_ctx,config)
        self.ln_a = None if not self.activate_a else nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        
        self.attn_v =None if not self.activate_v else Cond_Attention(nx,config.n_ctx,config)
        self.ln_v = None if not self.activate_v else nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = GPT2MLP(4 * nx, config)

    def forward(self, x, a,v, layer_past=None, attention_mask=None, head_mask=None):
        residual = x
        x = self.ln_1(x)
        attn_outputs = self.attn(
            x=x,
            z=x
        )
        attn_output = attn_outputs[0]
        # outputs = attn_outputs[1:]
        x = x + attn_output
        if self.activate_a:
            x = self.ln_a(x)
            cross_attn_outputs = self.attn_a(
                x=x,
                z=a
            )
            cross_attn_output = cross_attn_outputs[0]
            x = x + cross_attn_output
        if self.activate_v:
            x = self.ln_v(x)
            cross_attn_outputs = self.attn_v(
                x=x,
                z=v
            )
            cross_attn_output = cross_attn_outputs[0]
            x = x + cross_attn_output
        m = self.mlp(self.ln_2(x))
        x = x + m
        outputs = (x,)
        return outputs
    
class EmotionInjectionTransformer(GPT2Model):
    def __init__(self, config, final_out_type="Linear+LN",sd_feature_dim=2048):
        super(GPT2Model, self).__init__(config)
        self.add_attn = True
        self.sd_feature_dim = sd_feature_dim
        self.activate_a = True 
        self.activate_v = True 
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
        self.use_cache = config.use_cache
        self.embed_dim = config.n_embd
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.n_positions, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.xl_feature2gpt_feature = nn.Linear(self.sd_feature_dim,config.n_embd,bias=False)
        self.gpt_feature2xl_feature = nn.Linear(config.n_embd,self.sd_feature_dim,bias=False)
        if final_out_type == "Linear+LN" or final_out_type=="Linear+LN+noResidual":
            self.ln_xl_feature = nn.LayerNorm(self.sd_feature_dim, eps=1e-5)
        elif final_out_type == "Linear+LN+Linear" or final_out_type=="Linear+LN+Linear+noResidual":
            self.ln_xl_feature = nn.LayerNorm(self.sd_feature_dim, eps=1e-5)
            self.ff = nn.Linear(self.sd_feature_dim,self.sd_feature_dim,bias=False)
        else:
            raise NotImplementedError
        self.init_weights()
        self.cross_token = 16
        self.a_f = nn.Sequential(
            nn.Linear(1, 256),
            nn.ReLU(),
            nn.Linear(256, config.n_embd*self.cross_token if self.activate_a else config.n_embd)
        )
        self.v_f = nn.Sequential(
            nn.Linear(1, 256),
            nn.ReLU(),
            nn.Linear(256, config.n_embd*self.cross_token if self.activate_v else config.n_embd)
        )
        if self.add_attn:
            self.attn_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
            self.h = nn.ModuleList([Cond_Block(config,self.activate_a,self.activate_v) for _ in range(config.n_layer)])
        else:
            self.h = nn.ModuleList([GPT2Block(config) for _ in range(config.n_layer)])
        self.final_out_type = final_out_type
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
    def forward(

            self,

            input_ids=None,

            past_key_values=None,

            attention_mask=None,

            token_type_ids=None,

            position_ids=None,

            head_mask=None,

            inputs_embeds=None,

            arousal=None,

            valence=None,

    ):
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = [None] * len(self.h)
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        else:
            residual = inputs_embeds 
            inputs_embeds = self.xl_feature2gpt_feature(inputs_embeds)
    
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        hidden_states = self.drop(hidden_states)
        
        a_feature = self.attn_proj(self.a_f(arousal).view(-1, self.cross_token, self.config.n_embd) )
        v_feature = self.attn_proj(self.v_f(valence).view(-1, self.cross_token, self.config.n_embd) )
        
        output_shape = input_shape + (hidden_states.size(-1),)

        all_self_attentions = () if self.output_attentions else None
        all_hidden_states = () if self.output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            outputs = block(
                hidden_states, a = a_feature,v = v_feature, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i]
            )
            hidden_states = outputs[0]
            if self.output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if self.use_cache else 1],)

        hidden_states = self.ln_f(hidden_states)
        
        
        if self.final_out_type == "Linear+LN":
            hidden_states = residual+self.ln_xl_feature(self.gpt_feature2xl_feature(hidden_states))
        elif self.final_out_type == "Linear+LN+noResidual":
            hidden_states = self.ln_xl_feature(self.gpt_feature2xl_feature(hidden_states))
        elif self.final_out_type == "Linear+LN+Linear":
            hidden_states = residual+self.ff(self.ln_xl_feature(self.gpt_feature2xl_feature(hidden_states)))
        elif self.final_out_type == "Linear+LN+Linear+noResidual":
            hidden_states = self.ff(self.ln_xl_feature(self.gpt_feature2xl_feature(hidden_states)))
        elif self.final_out_type == "Linear+noResidual":
            hidden_states = self.gpt_feature2xl_feature(hidden_states)
        else:
            hidden_states = residual+self.gpt_feature2xl_feature(hidden_states)
            
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)
        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            attention_output_shape = input_shape[:-1] + (-1,) + all_self_attentions[0].shape[-2:]
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_self_attentions)
            outputs = outputs + (all_attentions,)

        return outputs