Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
|
|
|
| 5 |
from bs4 import BeautifulSoup
|
| 6 |
|
| 7 |
-
|
| 8 |
def get_text_from_url(url):
|
| 9 |
|
| 10 |
headers = {
|
|
@@ -20,14 +21,26 @@ def get_text_from_url(url):
|
|
| 20 |
else:
|
| 21 |
|
| 22 |
print("Error al obtener la página:", response.status_code)
|
| 23 |
-
return
|
| 24 |
|
| 25 |
classification_model_checkpoint = 'FrancoMartino/privacyPolicies_classification'
|
| 26 |
-
classification_tokenizer =
|
| 27 |
-
classification_model =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def predict(url):
|
| 30 |
text = get_text_from_url(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
inputs = classification_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
| 32 |
with torch.no_grad():
|
| 33 |
logits = classification_model(**inputs).logits
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
| 6 |
+
import bs4
|
| 7 |
from bs4 import BeautifulSoup
|
| 8 |
|
|
|
|
| 9 |
def get_text_from_url(url):
|
| 10 |
|
| 11 |
headers = {
|
|
|
|
| 21 |
else:
|
| 22 |
|
| 23 |
print("Error al obtener la página:", response.status_code)
|
| 24 |
+
return 'error'
|
| 25 |
|
| 26 |
classification_model_checkpoint = 'FrancoMartino/privacyPolicies_classification'
|
| 27 |
+
classification_tokenizer = AutoTokenizer.from_pretrained("FrancoMartino/privacyPolicies_classification")
|
| 28 |
+
classification_model = AutoModelForSequenceClassification.from_pretrained("FrancoMartino/privacyPolicies_classification")
|
| 29 |
+
|
| 30 |
+
summarization_model_checkpoint = "facebook/bart-large-cnn"
|
| 31 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model_checkpoint)
|
| 32 |
+
summarization_model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_checkpoint)
|
| 33 |
|
| 34 |
def predict(url):
|
| 35 |
text = get_text_from_url(url)
|
| 36 |
+
if text == 'error':
|
| 37 |
+
return {'ERROR': 'Error with the url'}
|
| 38 |
+
if len(classification_tokenizer.tokenize(text)) > 4096:
|
| 39 |
+
print('long')
|
| 40 |
+
inputs = summarization_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
summary_ids = summarization_model.generate(inputs['input_ids'], max_length=4096)
|
| 43 |
+
text = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 44 |
inputs = classification_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
| 45 |
with torch.no_grad():
|
| 46 |
logits = classification_model(**inputs).logits
|