Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
5 |
from bs4 import BeautifulSoup
|
6 |
|
7 |
-
|
8 |
def get_text_from_url(url):
|
9 |
|
10 |
headers = {
|
@@ -20,14 +21,26 @@ def get_text_from_url(url):
|
|
20 |
else:
|
21 |
|
22 |
print("Error al obtener la página:", response.status_code)
|
23 |
-
return
|
24 |
|
25 |
classification_model_checkpoint = 'FrancoMartino/privacyPolicies_classification'
|
26 |
-
classification_tokenizer =
|
27 |
-
classification_model =
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def predict(url):
|
30 |
text = get_text_from_url(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
inputs = classification_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
32 |
with torch.no_grad():
|
33 |
logits = classification_model(**inputs).logits
|
|
|
1 |
+
import transformers
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
+
import bs4
|
7 |
from bs4 import BeautifulSoup
|
8 |
|
|
|
9 |
def get_text_from_url(url):
|
10 |
|
11 |
headers = {
|
|
|
21 |
else:
|
22 |
|
23 |
print("Error al obtener la página:", response.status_code)
|
24 |
+
return 'error'
|
25 |
|
26 |
classification_model_checkpoint = 'FrancoMartino/privacyPolicies_classification'
|
27 |
+
classification_tokenizer = AutoTokenizer.from_pretrained("FrancoMartino/privacyPolicies_classification")
|
28 |
+
classification_model = AutoModelForSequenceClassification.from_pretrained("FrancoMartino/privacyPolicies_classification")
|
29 |
+
|
30 |
+
summarization_model_checkpoint = "facebook/bart-large-cnn"
|
31 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model_checkpoint)
|
32 |
+
summarization_model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_checkpoint)
|
33 |
|
34 |
def predict(url):
|
35 |
text = get_text_from_url(url)
|
36 |
+
if text == 'error':
|
37 |
+
return {'ERROR': 'Error with the url'}
|
38 |
+
if len(classification_tokenizer.tokenize(text)) > 4096:
|
39 |
+
print('long')
|
40 |
+
inputs = summarization_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
41 |
+
with torch.no_grad():
|
42 |
+
summary_ids = summarization_model.generate(inputs['input_ids'], max_length=4096)
|
43 |
+
text = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
44 |
inputs = classification_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
45 |
with torch.no_grad():
|
46 |
logits = classification_model(**inputs).logits
|