Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import LongformerTokenizerFast, LongformerForSequenceClassification
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import requests
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_text_from_url(url):
|
| 9 |
+
|
| 10 |
+
headers = {
|
| 11 |
+
'Accept-Language': 'en-US,en;q=0.9',
|
| 12 |
+
}
|
| 13 |
+
response = requests.get(url, headers=headers)
|
| 14 |
+
if response.status_code == 200:
|
| 15 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 16 |
+
|
| 17 |
+
texto = soup.get_text()
|
| 18 |
+
|
| 19 |
+
return texto
|
| 20 |
+
else:
|
| 21 |
+
|
| 22 |
+
print("Error al obtener la página:", response.status_code)
|
| 23 |
+
return None
|
| 24 |
+
|
| 25 |
+
classification_model_checkpoint = 'FrancoMartino/privacyPolicies_classification'
|
| 26 |
+
classification_tokenizer = LongformerTokenizerFast.from_pretrained(classification_model_checkpoint)
|
| 27 |
+
classification_model = LongformerForSequenceClassification.from_pretrained(classification_model_checkpoint)
|
| 28 |
+
|
| 29 |
+
def predict(url):
|
| 30 |
+
text = get_text_from_url(url)
|
| 31 |
+
inputs = classification_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
logits = classification_model(**inputs).logits
|
| 34 |
+
probabilities = torch.softmax(logits, dim=1)
|
| 35 |
+
prediction = probabilities[:,1].item()
|
| 36 |
+
return {'Risk Indicator': prediction}
|
| 37 |
+
|
| 38 |
+
examples_urls = [
|
| 39 |
+
["https://help.instagram.com/155833707900388"],
|
| 40 |
+
["https://www.apple.com/legal/privacy/en-ww/"],
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
interface = gr.Interface(fn=predict, inputs="text",examples=examples_urls, outputs="label", title="Privacy Policy Risk Indicator", description="Enter a privacy policy URL to calculate risk.")
|
| 44 |
+
interface.launch()
|