|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
import tempfile |
|
import fitz |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
return pipeline("document-question-answering", model="impira/layoutlm-document-qa") |
|
|
|
qa_pipeline = load_model() |
|
|
|
st.title("π Document Question Answering App") |
|
st.write("Upload a PDF file, enter a question, and get answers from the document.") |
|
|
|
|
|
pdf_file = st.file_uploader("Upload PDF", type=["pdf"]) |
|
|
|
|
|
question = st.text_input("Ask a question about the document:") |
|
|
|
if pdf_file and question: |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: |
|
tmp_file.write(pdf_file.read()) |
|
pdf_path = tmp_file.name |
|
|
|
doc = fitz.open(pdf_path) |
|
page = doc.load_page(0) |
|
pix = page.get_pixmap(dpi=150) |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
|
|
|
|
st.image(img, caption="Page 1 of PDF") |
|
|
|
|
|
with st.spinner("Searching for the answer..."): |
|
result = qa_pipeline(img, question) |
|
if result: |
|
top_answer = result[0] |
|
st.success(f"**Answer:** {top_answer['answer']} (score: {top_answer['score']:.2f})") |
|
else: |
|
st.warning("No answer found.") |
|
|