import streamlit as st from transformers import pipeline from PIL import Image import tempfile import fitz # PyMuPDF # Load the model @st.cache_resource def load_model(): return pipeline("document-question-answering", model="impira/layoutlm-document-qa") qa_pipeline = load_model() st.title("📄 Document Question Answering App") st.write("Upload a PDF file, enter a question, and get answers from the document.") # Upload PDF pdf_file = st.file_uploader("Upload PDF", type=["pdf"]) # Ask a question question = st.text_input("Ask a question about the document:") if pdf_file and question: # Convert first page of PDF to image using PyMuPDF with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: tmp_file.write(pdf_file.read()) pdf_path = tmp_file.name doc = fitz.open(pdf_path) page = doc.load_page(0) # just first page for now pix = page.get_pixmap(dpi=150) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # Show the rendered page st.image(img, caption="Page 1 of PDF") # Run the pipeline with st.spinner("Searching for the answer..."): result = qa_pipeline(img, question) st.success(f"**Answer:** {result['answer']} (score: {result['score']:.2f})")