import streamlit as st from transformers import pipeline from PIL import Image import tempfile import fitz # PyMuPDF # Load the model @st.cache_resource def load_model(): return pipeline("document-question-answering", model="impira/layoutlm-document-qa") qa_pipeline = load_model() st.title("📄 Document Question Answering App") st.write("Upload a PDF or Image file, enter a question, and get answers from the document.") # Upload PDF or image uploaded_file = st.file_uploader("Upload PDF or Image", type=["pdf", "png", "jpg", "jpeg"]) # Ask a question question = st.text_input("Ask a question about the document:") if uploaded_file and question: # Handle PDF file if uploaded_file.type == "application/pdf": with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: tmp_file.write(uploaded_file.read()) pdf_path = tmp_file.name doc = fitz.open(pdf_path) page = doc.load_page(0) # just first page for now pix = page.get_pixmap(dpi=150) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) st.image(img, caption="Page 1 of PDF") # Handle image file else: img = Image.open(uploaded_file) st.image(img, caption="Uploaded Image") # Run the pipeline with st.spinner("Searching for the answer..."): results = qa_pipeline(img, question) if results: top_answer = results[0] # get the highest-scoring answer st.success(f"**Answer:** {top_answer['answer']} (score: {top_answer['score']:.2f})") # Show top 3 options if available if len(results) > 1: st.markdown("\n**Other possible answers:**") for idx, ans in enumerate(results[1:3], start=2): st.markdown(f"- Option {idx}: {ans['answer']} (score: {ans['score']:.2f})") else: st.warning("No answer found.")