File size: 16,016 Bytes
230c9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
import re
import gc
import sys
import time
import torch
from PIL import Image, ImageDraw
from torchvision import transforms
from torch.utils.data import DataLoader

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..', '..'))
from pdf_extract_kit.utils.data_preprocess import load_pdf
from pdf_extract_kit.tasks.ocr.task import OCRTask
from pdf_extract_kit.dataset.dataset import MathDataset
from pdf_extract_kit.registry.registry import TASK_REGISTRY
from pdf_extract_kit.utils.merge_blocks_and_spans import (
    fill_spans_in_blocks,
    fix_block_spans,
    merge_para_with_text
)


def latex_rm_whitespace(s: str):
    """Remove unnecessary whitespace from LaTeX code.

    """
    text_reg = r'(\\(operatorname|mathrm|text|mathbf)\s?\*? {.*?})'
    letter = '[a-zA-Z]'
    noletter = '[\W_^\d]'
    names = [x[0].replace(' ', '') for x in re.findall(text_reg, s)]
    s = re.sub(text_reg, lambda match: str(names.pop(0)), s)
    news = s
    while True:
        s = news
        news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, noletter), r'\1\2', s)
        news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, letter), r'\1\2', news)
        news = re.sub(r'(%s)\s+?(%s)' % (letter, noletter), r'\1\2', news)
        if news == s:
            break
    return s

def crop_img(input_res, input_pil_img, padding_x=0, padding_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + padding_x * 2
    crop_new_height = crop_ymax - crop_ymin + padding_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (padding_x, padding_y))
    return_list = [padding_x, padding_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list

@TASK_REGISTRY.register("pdf2markdown")
class PDF2MARKDOWN(OCRTask):
    def __init__(self, layout_model, mfd_model, mfr_model, ocr_model):
        self.layout_model = layout_model
        self.mfd_model = mfd_model
        self.mfr_model = mfr_model
        self.ocr_model = ocr_model
        if self.mfr_model is not None:
            assert self.mfd_model is not None, "formula recognition based on formula detection, mfd_model can not be None."
            self.mfr_transform = transforms.Compose([self.mfr_model.vis_processor, ])
            
        self.color_palette  = {
            'title': (255, 64, 255),
            'plain text': (255, 255, 0),
            'abandon': (0, 255, 255),
            'figure': (255, 215, 135),
            'figure_caption': (215, 0, 95),
            'table': (100, 0, 48),
            'table_caption': (0, 175, 0),
            'table_footnote': (95, 0, 95),
            'isolate_formula': (175, 95, 0),
            'formula_caption': (95, 95, 0),
            'inline': (0, 0, 255),
            'isolated': (0, 255, 0),
            'text': (255, 0, 0)
        }

    def convert_format(self, yolo_res, id_to_names, ):
        """

        convert yolo format to pdf-extract format.

        """
        res_list = []
        for xyxy, conf, cla in zip(yolo_res.boxes.xyxy.cpu(), yolo_res.boxes.conf.cpu(), yolo_res.boxes.cls.cpu()):
            xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
            new_item = {
                'category_type': id_to_names[int(cla.item())],
                'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                'score': round(float(conf.item()), 2),
            }
            res_list.append(new_item)
        return res_list
    
    
    def process_single_pdf(self, image_list):
        """predict on one image, reture text detection and recognition results.

        

        Args:

            image_list: List[PIL.Image.Image]

            

        Returns:

            List[dict]: list of PDF extract results

            

        Return example:

            [

                {

                    "layout_dets": [

                        {

                            "category_type": "text",

                            "poly": [

                                380.6792698635707,

                                159.85058512958923,

                                765.1419999999998,

                                159.85058512958923,

                                765.1419999999998,

                                192.51073013642917,

                                380.6792698635707,

                                192.51073013642917

                            ],

                            "text": "this is an example text",

                            "score": 0.97

                        },

                        ...

                    ], 

                    "page_info": {

                        "page_no": 0,

                        "height": 2339,

                        "width": 1654,

                    }

                },

                ...

            ]

        """
        pdf_extract_res = []
        mf_image_list = []
        latex_filling_list = []
        for idx, image in enumerate(image_list):
            img_W, img_H = image.size
            if self.layout_model is not None:
                ori_layout_res = self.layout_model.predict([image], "")[0]
                layout_res = self.convert_format(ori_layout_res, self.layout_model.id_to_names)
            else:
                layout_res = []
            single_page_res = {'layout_dets': layout_res}
            single_page_res['page_info'] = dict(
                page_no = idx,
                height = img_H,
                width = img_W
            )
            if self.mfd_model is not None:
                mfd_res = self.mfd_model.predict([image], "")[0]
                for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                    xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                    new_item = {
                        'category_type': self.mfd_model.id_to_names[int(cla.item())],
                        'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                        'score': round(float(conf.item()), 2),
                        'latex': '',
                    }
                    single_page_res['layout_dets'].append(new_item)
                    if self.mfr_model is not None:
                        latex_filling_list.append(new_item)
                        bbox_img = image.crop((xmin, ymin, xmax, ymax))
                        mf_image_list.append(bbox_img)
                    
                pdf_extract_res.append(single_page_res)
                
                del mfd_res
                torch.cuda.empty_cache()
                gc.collect()
            
        # Formula recognition, collect all formula images in whole pdf file, then batch infer them.
        if self.mfr_model is not None:
            a = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=self.mfr_model.batch_size, num_workers=0)

            mfr_res = []
            for imgs in dataloader:
                imgs = imgs.to(self.mfr_model.device)
                output = self.mfr_model.model.generate({'image': imgs})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            b = time.time()
            print("formula nums:", len(mf_image_list), "mfr time:", round(b-a, 2))
        
        # ocr_res = self.ocr_model.predict(image)
            
        # ocr and table recognition
        for idx, image in enumerate(image_list):
            layout_res = pdf_extract_res[idx]['layout_dets']
            pil_img = image.copy()

            ocr_res_list = []
            table_res_list = []
            single_page_mfdetrec_res = []

            for res in layout_res:
                if res['category_type'] in self.mfd_model.id_to_names.values():
                    single_page_mfdetrec_res.append({
                        "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                                 int(res['poly'][4]), int(res['poly'][5])],
                    })
                elif res['category_type'] in [self.layout_model.id_to_names[cid] for cid in [0, 1, 2, 4, 6, 7]]:
                    ocr_res_list.append(res)
                elif res['category_type'] in [self.layout_model.id_to_names[5]]:
                    table_res_list.append(res)

            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(res, pil_img, padding_x=25, padding_y=25)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
                    # Filter formula blocks outside the graph
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

                # OCR recognition
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]

                # Integration results
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

                        # Convert the coordinates back to the original coordinate system
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_type': 'text',
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

            ocr_cost = round(time.time() - ocr_start, 2)
            print(f"ocr cost: {ocr_cost}")
        return pdf_extract_res
    
    def order_blocks(self, blocks):
        def calculate_oder(poly):
            xmin, ymin, _, _, xmax, ymax, _, _ = poly
            return ymin*3000 + xmin
        return sorted(blocks, key=lambda item: calculate_oder(item['poly']))
                 
    def convert2md(self, extract_res):
        blocks = []
        spans = []

        for item in extract_res['layout_dets']:
            if item['category_type'] in ['inline', 'text', 'isolated']:
                text_key = 'text' if item['category_type'] == 'text' else 'latex'
                xmin, ymin, _, _, xmax, ymax, _, _ = item['poly']
                spans.append(
                    {
                        "type": item['category_type'],
                        "bbox": [xmin, ymin, xmax, ymax],
                        "content": item[text_key]
                    }
                )
                if item['category_type'] == "isolated":
                    item['category_type'] = "isolate_formula"
                    blocks.append(item)
            else:
                blocks.append(item)
                
        blocks_types = ["title", "plain text", "figure_caption", "table_caption", "table_footnote", "isolate_formula", "formula_caption"]

        need_fix_bbox = []
        final_block = []
        for block in blocks:
            block_type = block["category_type"]
            if block_type in blocks_types:
                need_fix_bbox.append(block)
            else:
                final_block.append(block)
                
        block_with_spans, spans = fill_spans_in_blocks(need_fix_bbox, spans, 0.6)
        
        fix_blocks = fix_block_spans(block_with_spans)
        for para_block in fix_blocks:
            result = merge_para_with_text(para_block)
            if para_block['type'] == "isolate_formula":
                para_block['saved_info']['latex'] = result
            else:
                para_block['saved_info']['text'] = result
            final_block.append(para_block['saved_info'])
            
        final_block = self.order_blocks(final_block)
        md_text = ""
        for block in final_block:
            if block['category_type'] == "title":
                md_text += "\n# "+block['text'] +"\n"
            elif block['category_type'] in ["isolate_formula"]:
                md_text += "\n"+block['latex']+"\n"
            elif block['category_type'] in ["plain text", "figure_caption", "table_caption"]:
                md_text += " "+block['text']+" "
            elif block['category_type'] in ["figure", "table"]:
                continue
            else:
                continue
        return md_text
        
    def process(self, input_path, save_dir=None, visualize=False, merge2markdown=False):
        file_list = self.prepare_input_files(input_path)
        res_list = []
        for fpath in file_list:
            basename = os.path.basename(fpath)[:-4]
            if fpath.endswith(".pdf") or fpath.endswith(".PDF"):
                images = load_pdf(fpath)
            else:
                images = [Image.open(fpath)]
            pdf_extract_res = self.process_single_pdf(images)
            res_list.append(pdf_extract_res)
            if save_dir:
                os.makedirs(save_dir, exist_ok=True)
                self.save_json_result(pdf_extract_res, os.path.join(save_dir, f"{basename}.json"))
                
                if merge2markdown:
                    md_content = []
                    for extract_res in pdf_extract_res:
                        md_text = self.convert2md(extract_res)
                        md_content.append(md_text)
                    with open(os.path.join(save_dir, f"{basename}.md"), "w") as f:
                        f.write("\n\n".join(md_content))
                        
                if visualize:
                    for image, page_res in zip(images, pdf_extract_res):
                        self.visualize_image(image, page_res['layout_dets'], cate2color=self.color_palette)
                    if fpath.endswith(".pdf") or fpath.endswith(".PDF"):
                        first_page = images.pop(0)
                        first_page.save(os.path.join(save_dir, f'{basename}.pdf'), 'PDF', resolution=100, save_all=True, append_images=images)
                    else:
                        images[0].save(os.path.join(save_dir, f"{basename}.png"))

        return res_list