Spaces:
Build error
Build error
File size: 16,016 Bytes
230c9a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import re
import gc
import sys
import time
import torch
from PIL import Image, ImageDraw
from torchvision import transforms
from torch.utils.data import DataLoader
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..', '..'))
from pdf_extract_kit.utils.data_preprocess import load_pdf
from pdf_extract_kit.tasks.ocr.task import OCRTask
from pdf_extract_kit.dataset.dataset import MathDataset
from pdf_extract_kit.registry.registry import TASK_REGISTRY
from pdf_extract_kit.utils.merge_blocks_and_spans import (
fill_spans_in_blocks,
fix_block_spans,
merge_para_with_text
)
def latex_rm_whitespace(s: str):
"""Remove unnecessary whitespace from LaTeX code.
"""
text_reg = r'(\\(operatorname|mathrm|text|mathbf)\s?\*? {.*?})'
letter = '[a-zA-Z]'
noletter = '[\W_^\d]'
names = [x[0].replace(' ', '') for x in re.findall(text_reg, s)]
s = re.sub(text_reg, lambda match: str(names.pop(0)), s)
news = s
while True:
s = news
news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, noletter), r'\1\2', s)
news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, letter), r'\1\2', news)
news = re.sub(r'(%s)\s+?(%s)' % (letter, noletter), r'\1\2', news)
if news == s:
break
return s
def crop_img(input_res, input_pil_img, padding_x=0, padding_y=0):
crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
# Create a white background with an additional width and height of 50
crop_new_width = crop_xmax - crop_xmin + padding_x * 2
crop_new_height = crop_ymax - crop_ymin + padding_y * 2
return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')
# Crop image
crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
cropped_img = input_pil_img.crop(crop_box)
return_image.paste(cropped_img, (padding_x, padding_y))
return_list = [padding_x, padding_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
return return_image, return_list
@TASK_REGISTRY.register("pdf2markdown")
class PDF2MARKDOWN(OCRTask):
def __init__(self, layout_model, mfd_model, mfr_model, ocr_model):
self.layout_model = layout_model
self.mfd_model = mfd_model
self.mfr_model = mfr_model
self.ocr_model = ocr_model
if self.mfr_model is not None:
assert self.mfd_model is not None, "formula recognition based on formula detection, mfd_model can not be None."
self.mfr_transform = transforms.Compose([self.mfr_model.vis_processor, ])
self.color_palette = {
'title': (255, 64, 255),
'plain text': (255, 255, 0),
'abandon': (0, 255, 255),
'figure': (255, 215, 135),
'figure_caption': (215, 0, 95),
'table': (100, 0, 48),
'table_caption': (0, 175, 0),
'table_footnote': (95, 0, 95),
'isolate_formula': (175, 95, 0),
'formula_caption': (95, 95, 0),
'inline': (0, 0, 255),
'isolated': (0, 255, 0),
'text': (255, 0, 0)
}
def convert_format(self, yolo_res, id_to_names, ):
"""
convert yolo format to pdf-extract format.
"""
res_list = []
for xyxy, conf, cla in zip(yolo_res.boxes.xyxy.cpu(), yolo_res.boxes.conf.cpu(), yolo_res.boxes.cls.cpu()):
xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
new_item = {
'category_type': id_to_names[int(cla.item())],
'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
'score': round(float(conf.item()), 2),
}
res_list.append(new_item)
return res_list
def process_single_pdf(self, image_list):
"""predict on one image, reture text detection and recognition results.
Args:
image_list: List[PIL.Image.Image]
Returns:
List[dict]: list of PDF extract results
Return example:
[
{
"layout_dets": [
{
"category_type": "text",
"poly": [
380.6792698635707,
159.85058512958923,
765.1419999999998,
159.85058512958923,
765.1419999999998,
192.51073013642917,
380.6792698635707,
192.51073013642917
],
"text": "this is an example text",
"score": 0.97
},
...
],
"page_info": {
"page_no": 0,
"height": 2339,
"width": 1654,
}
},
...
]
"""
pdf_extract_res = []
mf_image_list = []
latex_filling_list = []
for idx, image in enumerate(image_list):
img_W, img_H = image.size
if self.layout_model is not None:
ori_layout_res = self.layout_model.predict([image], "")[0]
layout_res = self.convert_format(ori_layout_res, self.layout_model.id_to_names)
else:
layout_res = []
single_page_res = {'layout_dets': layout_res}
single_page_res['page_info'] = dict(
page_no = idx,
height = img_H,
width = img_W
)
if self.mfd_model is not None:
mfd_res = self.mfd_model.predict([image], "")[0]
for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
new_item = {
'category_type': self.mfd_model.id_to_names[int(cla.item())],
'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
'score': round(float(conf.item()), 2),
'latex': '',
}
single_page_res['layout_dets'].append(new_item)
if self.mfr_model is not None:
latex_filling_list.append(new_item)
bbox_img = image.crop((xmin, ymin, xmax, ymax))
mf_image_list.append(bbox_img)
pdf_extract_res.append(single_page_res)
del mfd_res
torch.cuda.empty_cache()
gc.collect()
# Formula recognition, collect all formula images in whole pdf file, then batch infer them.
if self.mfr_model is not None:
a = time.time()
dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
dataloader = DataLoader(dataset, batch_size=self.mfr_model.batch_size, num_workers=0)
mfr_res = []
for imgs in dataloader:
imgs = imgs.to(self.mfr_model.device)
output = self.mfr_model.model.generate({'image': imgs})
mfr_res.extend(output['pred_str'])
for res, latex in zip(latex_filling_list, mfr_res):
res['latex'] = latex_rm_whitespace(latex)
b = time.time()
print("formula nums:", len(mf_image_list), "mfr time:", round(b-a, 2))
# ocr_res = self.ocr_model.predict(image)
# ocr and table recognition
for idx, image in enumerate(image_list):
layout_res = pdf_extract_res[idx]['layout_dets']
pil_img = image.copy()
ocr_res_list = []
table_res_list = []
single_page_mfdetrec_res = []
for res in layout_res:
if res['category_type'] in self.mfd_model.id_to_names.values():
single_page_mfdetrec_res.append({
"bbox": [int(res['poly'][0]), int(res['poly'][1]),
int(res['poly'][4]), int(res['poly'][5])],
})
elif res['category_type'] in [self.layout_model.id_to_names[cid] for cid in [0, 1, 2, 4, 6, 7]]:
ocr_res_list.append(res)
elif res['category_type'] in [self.layout_model.id_to_names[5]]:
table_res_list.append(res)
ocr_start = time.time()
# Process each area that requires OCR processing
for res in ocr_res_list:
new_image, useful_list = crop_img(res, pil_img, padding_x=25, padding_y=25)
paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
# Adjust the coordinates of the formula area
adjusted_mfdetrec_res = []
for mf_res in single_page_mfdetrec_res:
mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
# Adjust the coordinates of the formula area to the coordinates relative to the cropping area
x0 = mf_xmin - xmin + paste_x
y0 = mf_ymin - ymin + paste_y
x1 = mf_xmax - xmin + paste_x
y1 = mf_ymax - ymin + paste_y
# Filter formula blocks outside the graph
if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
continue
else:
adjusted_mfdetrec_res.append({
"bbox": [x0, y0, x1, y1],
})
# OCR recognition
ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
# Integration results
if ocr_res:
for box_ocr_res in ocr_res:
p1, p2, p3, p4 = box_ocr_res[0]
text, score = box_ocr_res[1]
# Convert the coordinates back to the original coordinate system
p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]
layout_res.append({
'category_type': 'text',
'poly': p1 + p2 + p3 + p4,
'score': round(score, 2),
'text': text,
})
ocr_cost = round(time.time() - ocr_start, 2)
print(f"ocr cost: {ocr_cost}")
return pdf_extract_res
def order_blocks(self, blocks):
def calculate_oder(poly):
xmin, ymin, _, _, xmax, ymax, _, _ = poly
return ymin*3000 + xmin
return sorted(blocks, key=lambda item: calculate_oder(item['poly']))
def convert2md(self, extract_res):
blocks = []
spans = []
for item in extract_res['layout_dets']:
if item['category_type'] in ['inline', 'text', 'isolated']:
text_key = 'text' if item['category_type'] == 'text' else 'latex'
xmin, ymin, _, _, xmax, ymax, _, _ = item['poly']
spans.append(
{
"type": item['category_type'],
"bbox": [xmin, ymin, xmax, ymax],
"content": item[text_key]
}
)
if item['category_type'] == "isolated":
item['category_type'] = "isolate_formula"
blocks.append(item)
else:
blocks.append(item)
blocks_types = ["title", "plain text", "figure_caption", "table_caption", "table_footnote", "isolate_formula", "formula_caption"]
need_fix_bbox = []
final_block = []
for block in blocks:
block_type = block["category_type"]
if block_type in blocks_types:
need_fix_bbox.append(block)
else:
final_block.append(block)
block_with_spans, spans = fill_spans_in_blocks(need_fix_bbox, spans, 0.6)
fix_blocks = fix_block_spans(block_with_spans)
for para_block in fix_blocks:
result = merge_para_with_text(para_block)
if para_block['type'] == "isolate_formula":
para_block['saved_info']['latex'] = result
else:
para_block['saved_info']['text'] = result
final_block.append(para_block['saved_info'])
final_block = self.order_blocks(final_block)
md_text = ""
for block in final_block:
if block['category_type'] == "title":
md_text += "\n# "+block['text'] +"\n"
elif block['category_type'] in ["isolate_formula"]:
md_text += "\n"+block['latex']+"\n"
elif block['category_type'] in ["plain text", "figure_caption", "table_caption"]:
md_text += " "+block['text']+" "
elif block['category_type'] in ["figure", "table"]:
continue
else:
continue
return md_text
def process(self, input_path, save_dir=None, visualize=False, merge2markdown=False):
file_list = self.prepare_input_files(input_path)
res_list = []
for fpath in file_list:
basename = os.path.basename(fpath)[:-4]
if fpath.endswith(".pdf") or fpath.endswith(".PDF"):
images = load_pdf(fpath)
else:
images = [Image.open(fpath)]
pdf_extract_res = self.process_single_pdf(images)
res_list.append(pdf_extract_res)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
self.save_json_result(pdf_extract_res, os.path.join(save_dir, f"{basename}.json"))
if merge2markdown:
md_content = []
for extract_res in pdf_extract_res:
md_text = self.convert2md(extract_res)
md_content.append(md_text)
with open(os.path.join(save_dir, f"{basename}.md"), "w") as f:
f.write("\n\n".join(md_content))
if visualize:
for image, page_res in zip(images, pdf_extract_res):
self.visualize_image(image, page_res['layout_dets'], cate2color=self.color_palette)
if fpath.endswith(".pdf") or fpath.endswith(".PDF"):
first_page = images.pop(0)
first_page.save(os.path.join(save_dir, f'{basename}.pdf'), 'PDF', resolution=100, save_all=True, append_images=images)
else:
images[0].save(os.path.join(save_dir, f"{basename}.png"))
return res_list
|