Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import io | |
| import numpy as np | |
| import torch | |
| from decord import cpu, VideoReader, bridge | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers import BitsAndBytesConfig | |
| import json | |
| MODEL_PATH = "THUDM/cogvlm2-llama3-caption" | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 | |
| DELAY_REASONS = { | |
| "step1": {"reasons": ["No raw material available", "Person repatching the tire"]}, | |
| "step2": {"reasons": ["Person repatching the tire", "Lack of raw material"]}, | |
| "step3": {"reasons": ["Person repatching the tire", "Lack of raw material"]}, | |
| "step4": {"reasons": ["Person repatching the tire", "Lack of raw material"]}, | |
| "step5": {"reasons": ["Person repatching the tire", "Lack of raw material"]}, | |
| "step6": {"reasons": ["Person repatching the tire", "Lack of raw material"]}, | |
| "step7": {"reasons": ["Person repatching the tire", "Lack of raw material"]}, | |
| "step8": {"reasons": ["No person available to collect tire", "Person repatching the tire"]} | |
| } | |
| with open('delay_reasons.json', 'w') as f: | |
| json.dump(DELAY_REASONS, f, indent=4) | |
| def load_video(video_data, strategy='chat'): | |
| bridge.set_bridge('torch') | |
| mp4_stream = video_data | |
| num_frames = 24 | |
| decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) | |
| frame_id_list = [] | |
| total_frames = len(decord_vr) | |
| timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))] | |
| max_second = round(max(timestamps)) + 1 | |
| for second in range(max_second): | |
| closest_num = min(timestamps, key=lambda x: abs(x - second)) | |
| index = timestamps.index(closest_num) | |
| frame_id_list.append(index) | |
| if len(frame_id_list) >= num_frames: | |
| break | |
| video_data = decord_vr.get_batch(frame_id_list) | |
| video_data = video_data.permute(3, 0, 1, 2) | |
| return video_data | |
| def load_model(): | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=TORCH_TYPE, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_PATH, | |
| torch_dtype=TORCH_TYPE, | |
| trust_remote_code=True, | |
| quantization_config=quantization_config, | |
| device_map="auto" | |
| ).eval() | |
| return model, tokenizer | |
| def predict(prompt, video_data, temperature, model, tokenizer): | |
| strategy = 'chat' | |
| video = load_video(video_data, strategy=strategy) | |
| history = [] | |
| inputs = model.build_conversation_input_ids( | |
| tokenizer=tokenizer, | |
| query=prompt, | |
| images=[video], | |
| history=history, | |
| template_version=strategy | |
| ) | |
| inputs = { | |
| 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), | |
| 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), | |
| 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), | |
| 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], | |
| } | |
| gen_kwargs = { | |
| "max_new_tokens": 2048, | |
| "pad_token_id": 128002, | |
| "top_k": 1, | |
| "do_sample": False, | |
| "top_p": 0.1, | |
| "temperature": temperature, | |
| } | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs, **gen_kwargs) | |
| outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| def get_base_prompt(): | |
| return """You are an expert AI model trained to analyze and interpret manufacturing processes. | |
| The task is to evaluate video footage of specific steps in a tire manufacturing process. | |
| The process has 8 total steps, but only delayed steps are provided for analysis. | |
| **Your Goal:** | |
| 1. Analyze the provided video. | |
| 2. Identify possible reasons for the delay in the manufacturing step shown in the video. | |
| 3. Provide a clear explanation of the delay based on observed factors. | |
| **Context:** | |
| Tire manufacturing involves 8 steps, and delays may occur due to machinery faults, | |
| raw material availability, labor efficiency, or unexpected disruptions. | |
| **Output:** | |
| Explain why the delay occurred in this step. Include specific observations | |
| and their connection to the delay.""" | |
| def inference(video, step_number, selected_reason): | |
| if not video: | |
| return "Please upload a video first." | |
| model, tokenizer = load_model() | |
| video_data = video.read() | |
| base_prompt = get_base_prompt() | |
| full_prompt = f"{base_prompt}\n\nAnalyzing Step {step_number}\nPossible reason: {selected_reason}" | |
| temperature = 0.8 | |
| response = predict(full_prompt, video_data, temperature, model, tokenizer) | |
| return response | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| video = gr.Video(label="Video Input", sources=["upload"]) | |
| step_number = gr.Dropdown(choices=[f"Step {i}" for i in range(1, 9)], label="Manufacturing Step", value="Step 1") | |
| reason = gr.Dropdown(choices=DELAY_REASONS["step1"]["reasons"], label="Possible Delay Reason", value=DELAY_REASONS["step1"]["reasons"][0]) | |
| analyze_btn = gr.Button("Analyze Delay", variant="primary") | |
| with gr.Column(): | |
| output = gr.Textbox(label="Analysis Result") | |
| def update_reasons(step): | |
| step_num = step.lower().replace(" ", "") | |
| return gr.Dropdown(choices=DELAY_REASONS[step_num]["reasons"]) | |
| step_number.change(fn=update_reasons, inputs=[step_number], outputs=[reason]) | |
| analyze_btn.click(fn=inference, inputs=[video, step_number, reason], outputs=[output]) | |
| if __name__ == "__main__": | |
| demo.launch() | |