Spaces:
Sleeping
Sleeping
Delete app_llama3_27_4_24.py
Browse files- app_llama3_27_4_24.py +0 -205
app_llama3_27_4_24.py
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
from torch import cuda, bfloat16
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
5 |
-
from langchain.llms import HuggingFacePipeline
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chains import ConversationalRetrievalChain
|
8 |
-
import gradio as gr
|
9 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
-
|
11 |
-
|
12 |
-
# Load the Hugging Face token from environment
|
13 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
-
|
15 |
-
# Define stopping criteria
|
16 |
-
class StopOnTokens(StoppingCriteria):
|
17 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
18 |
-
for stop_ids in stop_token_ids:
|
19 |
-
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
20 |
-
return True
|
21 |
-
return False
|
22 |
-
|
23 |
-
# Load the LLaMA model and tokenizer
|
24 |
-
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
25 |
-
# model_id = 'mistralai/Mistral-7B-Instruct-v0.3'
|
26 |
-
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
27 |
-
|
28 |
-
# Set quantization configuration
|
29 |
-
bnb_config = BitsAndBytesConfig(
|
30 |
-
load_in_4bit=True,
|
31 |
-
bnb_4bit_quant_type='nf4',
|
32 |
-
bnb_4bit_use_double_quant=True,
|
33 |
-
bnb_4bit_compute_dtype=bfloat16
|
34 |
-
)
|
35 |
-
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
37 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
38 |
-
|
39 |
-
# Define stopping criteria
|
40 |
-
stop_list = ['\nHuman:', '\n```\n']
|
41 |
-
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
42 |
-
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
43 |
-
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
44 |
-
|
45 |
-
# Create text generation pipeline
|
46 |
-
generate_text = pipeline(
|
47 |
-
model=model,
|
48 |
-
tokenizer=tokenizer,
|
49 |
-
return_full_text=True,
|
50 |
-
task='text-generation',
|
51 |
-
stopping_criteria=stopping_criteria,
|
52 |
-
temperature=0.1,
|
53 |
-
max_new_tokens=512,
|
54 |
-
repetition_penalty=1.1
|
55 |
-
)
|
56 |
-
|
57 |
-
llm = HuggingFacePipeline(pipeline=generate_text)
|
58 |
-
|
59 |
-
# Load the stored FAISS index
|
60 |
-
try:
|
61 |
-
vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
|
62 |
-
print("Loaded embedding successfully")
|
63 |
-
except ImportError as e:
|
64 |
-
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
65 |
-
raise e
|
66 |
-
|
67 |
-
# Set up the Conversational Retrieval Chain
|
68 |
-
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
69 |
-
|
70 |
-
chat_history = []
|
71 |
-
|
72 |
-
def format_prompt(query):
|
73 |
-
prompt = f"""
|
74 |
-
You are a knowledgeable assistant with access to a comprehensive database.
|
75 |
-
I need you to answer my question and provide related information in a specific format.
|
76 |
-
Here's what I need:
|
77 |
-
1. A brief, general response to my question based on related answers retrieved.
|
78 |
-
2. A JSON-formatted output containing:
|
79 |
-
- "question": The original question.
|
80 |
-
- "answer": The detailed answer.
|
81 |
-
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
|
82 |
-
- "question": The related question.
|
83 |
-
- "answer": The related answer.
|
84 |
-
Here's my question:
|
85 |
-
{query}
|
86 |
-
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
87 |
-
"""
|
88 |
-
return prompt
|
89 |
-
|
90 |
-
def qa_infer(query):
|
91 |
-
formatted_prompt = format_prompt(query)
|
92 |
-
result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
93 |
-
for doc in result['source_documents']:
|
94 |
-
print("-"*50)
|
95 |
-
print("Retrieved Document:", doc.page_content)
|
96 |
-
print("#"*100)
|
97 |
-
print(result['answer'])
|
98 |
-
return result['answer']
|
99 |
-
|
100 |
-
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
101 |
-
"Can BQ25896 support I2C interface?",
|
102 |
-
"Does TDA2 vout support bt656 8-bit mode?"]
|
103 |
-
|
104 |
-
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
105 |
-
demo.launch()
|
106 |
-
|
107 |
-
# import os
|
108 |
-
# import torch
|
109 |
-
# from torch import cuda, bfloat16
|
110 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
111 |
-
# from langchain.llms import HuggingFacePipeline
|
112 |
-
# from langchain.vectorstores import FAISS
|
113 |
-
# from langchain.chains import ConversationalRetrievalChain
|
114 |
-
# import gradio as gr
|
115 |
-
# from langchain.embeddings import HuggingFaceEmbeddings
|
116 |
-
|
117 |
-
# # Load the Hugging Face token from environment
|
118 |
-
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
119 |
-
|
120 |
-
# # Define stopping criteria
|
121 |
-
# class StopOnTokens(StoppingCriteria):
|
122 |
-
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
123 |
-
# for stop_ids in stop_token_ids:
|
124 |
-
# if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
125 |
-
# return True
|
126 |
-
# return False
|
127 |
-
|
128 |
-
# # Load the LLaMA model and tokenizer
|
129 |
-
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
130 |
-
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
131 |
-
|
132 |
-
# # Set quantization configuration
|
133 |
-
# bnb_config = BitsAndBytesConfig(
|
134 |
-
# load_in_4bit=True,
|
135 |
-
# bnb_4bit_quant_type='nf4',
|
136 |
-
# bnb_4bit_use_double_quant=True,
|
137 |
-
# bnb_4bit_compute_dtype=bfloat16
|
138 |
-
# )
|
139 |
-
|
140 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
141 |
-
# model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
142 |
-
|
143 |
-
# # Define stopping criteria
|
144 |
-
# stop_list = ['\nHuman:', '\n```\n']
|
145 |
-
# stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
146 |
-
# stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
147 |
-
# stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
148 |
-
|
149 |
-
# # Create text generation pipeline
|
150 |
-
# generate_text = pipeline(
|
151 |
-
# model=model,
|
152 |
-
# tokenizer=tokenizer,
|
153 |
-
# return_full_text=True,
|
154 |
-
# task='text-generation',
|
155 |
-
# stopping_criteria=stopping_criteria,
|
156 |
-
# temperature=0.1,
|
157 |
-
# max_new_tokens=512,
|
158 |
-
# repetition_penalty=1.1
|
159 |
-
# )
|
160 |
-
|
161 |
-
# llm = HuggingFacePipeline(pipeline=generate_text)
|
162 |
-
|
163 |
-
# # Load the stored FAISS index
|
164 |
-
# try:
|
165 |
-
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
|
166 |
-
# vectorstore = FAISS.load_local('faiss_index', embeddings)
|
167 |
-
# print("Loaded embedding successfully")
|
168 |
-
# except ImportError as e:
|
169 |
-
# print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
170 |
-
# raise e
|
171 |
-
|
172 |
-
# # Set up the Conversational Retrieval Chain
|
173 |
-
# chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
174 |
-
|
175 |
-
# chat_history = []
|
176 |
-
|
177 |
-
# def format_prompt(query):
|
178 |
-
# prompt = f"""
|
179 |
-
# You are a knowledgeable assistant with access to a comprehensive database.
|
180 |
-
# I need you to answer my question and provide related information in a specific format.
|
181 |
-
# Here's what I need:
|
182 |
-
# 1. A brief, general response to my question based on related answers retrieved.
|
183 |
-
# 2. A JSON-formatted output containing:
|
184 |
-
# - "question": The original question.
|
185 |
-
# - "answer": The detailed answer.
|
186 |
-
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
|
187 |
-
# - "question": The related question.
|
188 |
-
# - "answer": The related answer.
|
189 |
-
# Here's my question:
|
190 |
-
# {query}
|
191 |
-
# Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
192 |
-
# """
|
193 |
-
# return prompt
|
194 |
-
|
195 |
-
# def qa_infer(query):
|
196 |
-
# formatted_prompt = format_prompt(query)
|
197 |
-
# result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
198 |
-
# return result['answer']
|
199 |
-
|
200 |
-
# EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
201 |
-
# "Can BQ25896 support I2C interface?",
|
202 |
-
# "Does TDA2 vout support bt656 8-bit mode?"]
|
203 |
-
|
204 |
-
# demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
205 |
-
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|