Spaces:
Sleeping
Sleeping
Delete app_27_5_28_mistral2.py
Browse files- app_27_5_28_mistral2.py +0 -259
app_27_5_28_mistral2.py
DELETED
@@ -1,259 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
from torch import cuda, bfloat16
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
5 |
-
from langchain.llms import HuggingFacePipeline
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chains import ConversationalRetrievalChain
|
8 |
-
import gradio as gr
|
9 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
-
|
11 |
-
|
12 |
-
# Load the Hugging Face token from environment
|
13 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
-
|
15 |
-
# Define stopping criteria
|
16 |
-
class StopOnTokens(StoppingCriteria):
|
17 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
18 |
-
for stop_ids in stop_token_ids:
|
19 |
-
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
20 |
-
return True
|
21 |
-
return False
|
22 |
-
|
23 |
-
# Load the LLaMA model and tokenizer
|
24 |
-
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
25 |
-
# model_id= "meta-llama/Llama-2-7b-chat-hf"
|
26 |
-
model_id="mistralai/Mistral-7B-Instruct-v0.2"
|
27 |
-
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
28 |
-
|
29 |
-
# Set quantization configuration
|
30 |
-
bnb_config = BitsAndBytesConfig(
|
31 |
-
load_in_4bit=True,
|
32 |
-
bnb_4bit_quant_type='nf4',
|
33 |
-
bnb_4bit_use_double_quant=True,
|
34 |
-
bnb_4bit_compute_dtype=bfloat16
|
35 |
-
)
|
36 |
-
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
38 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
39 |
-
|
40 |
-
# Define stopping criteria
|
41 |
-
stop_list = ['\nHuman:', '\n```\n']
|
42 |
-
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
43 |
-
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
44 |
-
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
45 |
-
|
46 |
-
# Create text generation pipeline
|
47 |
-
generate_text = pipeline(
|
48 |
-
model=model,
|
49 |
-
tokenizer=tokenizer,
|
50 |
-
return_full_text=True,
|
51 |
-
task='text-generation',
|
52 |
-
# stopping_criteria=stopping_criteria,
|
53 |
-
temperature=0.1,
|
54 |
-
max_new_tokens=2048,
|
55 |
-
# repetition_penalty=1.1
|
56 |
-
)
|
57 |
-
|
58 |
-
llm = HuggingFacePipeline(pipeline=generate_text)
|
59 |
-
|
60 |
-
# Load the stored FAISS index
|
61 |
-
try:
|
62 |
-
vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
|
63 |
-
print("Loaded embedding successfully")
|
64 |
-
except ImportError as e:
|
65 |
-
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
66 |
-
raise e
|
67 |
-
|
68 |
-
# Set up the Conversational Retrieval Chain
|
69 |
-
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
70 |
-
|
71 |
-
chat_history = []
|
72 |
-
|
73 |
-
def format_prompt(query):
|
74 |
-
prompt = f"""
|
75 |
-
You are a knowledgeable assistant with access to a comprehensive database.
|
76 |
-
I need you to answer my question and provide related information in a specific format.
|
77 |
-
Here's what I need:
|
78 |
-
A brief, general response to my question based on related answers retrieved.
|
79 |
-
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
80 |
-
|
81 |
-
A JSON-formatted output containing: ALL SOURCE DOCUMENTS
|
82 |
-
- "question": The ticketName
|
83 |
-
- "answer": The Responses
|
84 |
-
Here's my question:
|
85 |
-
{query}
|
86 |
-
"""
|
87 |
-
|
88 |
-
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys. Consider all source documents:
|
89 |
-
# - "question": The related question.
|
90 |
-
# - "answer": The related answer.
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# Example 1:
|
95 |
-
# {{
|
96 |
-
# "question": "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
97 |
-
# "answer": "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
|
98 |
-
# "related_questions": [
|
99 |
-
# {{
|
100 |
-
# "question": "Can you provide MLBP documentation on TDA2?",
|
101 |
-
# "answer": "MLB is documented for DRA devices in the TRM book, chapter 24.12."
|
102 |
-
# }},
|
103 |
-
# {{
|
104 |
-
# "question": "Hi, could you share me the TDA2x documents about Security(SPRUHS7) and Cryptographic(SPRUHS8) addendums?",
|
105 |
-
# "answer": "Most of TDA2 documents are on ti.com under the product folder."
|
106 |
-
# }},
|
107 |
-
# {{
|
108 |
-
# "question": "Is any one can provide us a way to access CDDS for nessary docs?",
|
109 |
-
# "answer": "Which document are you looking for?"
|
110 |
-
# }},
|
111 |
-
# {{
|
112 |
-
# "question": "What can you tell me about the TDA2 and TDA3 processors? Can they / do they run Linux?",
|
113 |
-
# "answer": "We have moved your post to the appropriate forum."
|
114 |
-
# }}
|
115 |
-
# ]
|
116 |
-
# }}
|
117 |
-
|
118 |
-
# Final Answer: To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.
|
119 |
-
|
120 |
-
# Example 2:
|
121 |
-
# {{
|
122 |
-
# "question": "Can BQ25896 support I2C interface?",
|
123 |
-
# "answer": "Yes, the BQ25896 charger supports the I2C interface for communication.",
|
124 |
-
# "related_questions": [
|
125 |
-
# {{
|
126 |
-
# "question": "What are the main features of BQ25896?",
|
127 |
-
# "answer": "The BQ25896 features include high-efficiency, fast charging capability, and a wide input voltage range."
|
128 |
-
# }},
|
129 |
-
# {{
|
130 |
-
# "question": "How to configure the BQ25896 for USB charging?",
|
131 |
-
# "answer": "To configure the BQ25896 for USB charging, set the input current limit and the charging current via I2C registers."
|
132 |
-
# }}
|
133 |
-
# ]
|
134 |
-
# }}
|
135 |
-
|
136 |
-
# Final Answer: Yes, the BQ25896 charger supports the I2C interface for communication.
|
137 |
-
|
138 |
-
# """
|
139 |
-
|
140 |
-
|
141 |
-
return prompt
|
142 |
-
|
143 |
-
|
144 |
-
def qa_infer(query):
|
145 |
-
formatted_prompt = format_prompt(query)
|
146 |
-
result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
147 |
-
for doc in result['source_documents']:
|
148 |
-
print("-"*50)
|
149 |
-
print("Retrieved Document:", doc.page_content)
|
150 |
-
print("#"*100)
|
151 |
-
print(result['answer'])
|
152 |
-
return result['answer']
|
153 |
-
|
154 |
-
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
155 |
-
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
156 |
-
"Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]
|
157 |
-
|
158 |
-
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
159 |
-
demo.launch()
|
160 |
-
|
161 |
-
# import os
|
162 |
-
# import torch
|
163 |
-
# from torch import cuda, bfloat16
|
164 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
165 |
-
# from langchain.llms import HuggingFacePipeline
|
166 |
-
# from langchain.vectorstores import FAISS
|
167 |
-
# from langchain.chains import ConversationalRetrievalChain
|
168 |
-
# import gradio as gr
|
169 |
-
# from langchain.embeddings import HuggingFaceEmbeddings
|
170 |
-
|
171 |
-
# # Load the Hugging Face token from environment
|
172 |
-
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
173 |
-
|
174 |
-
# # Define stopping criteria
|
175 |
-
# class StopOnTokens(StoppingCriteria):
|
176 |
-
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
177 |
-
# for stop_ids in stop_token_ids:
|
178 |
-
# if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
179 |
-
# return True
|
180 |
-
# return False
|
181 |
-
|
182 |
-
# # Load the LLaMA model and tokenizer
|
183 |
-
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
184 |
-
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
185 |
-
|
186 |
-
# # Set quantization configuration
|
187 |
-
# bnb_config = BitsAndBytesConfig(
|
188 |
-
# load_in_4bit=True,
|
189 |
-
# bnb_4bit_quant_type='nf4',
|
190 |
-
# bnb_4bit_use_double_quant=True,
|
191 |
-
# bnb_4bit_compute_dtype=bfloat16
|
192 |
-
# )
|
193 |
-
|
194 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
195 |
-
# model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
196 |
-
|
197 |
-
# # Define stopping criteria
|
198 |
-
# stop_list = ['\nHuman:', '\n```\n']
|
199 |
-
# stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
200 |
-
# stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
201 |
-
# stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
202 |
-
|
203 |
-
# # Create text generation pipeline
|
204 |
-
# generate_text = pipeline(
|
205 |
-
# model=model,
|
206 |
-
# tokenizer=tokenizer,
|
207 |
-
# return_full_text=True,
|
208 |
-
# task='text-generation',
|
209 |
-
# stopping_criteria=stopping_criteria,
|
210 |
-
# temperature=0.1,
|
211 |
-
# max_new_tokens=512,
|
212 |
-
# repetition_penalty=1.1
|
213 |
-
# )
|
214 |
-
|
215 |
-
# llm = HuggingFacePipeline(pipeline=generate_text)
|
216 |
-
|
217 |
-
# # Load the stored FAISS index
|
218 |
-
# try:
|
219 |
-
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
|
220 |
-
# vectorstore = FAISS.load_local('faiss_index', embeddings)
|
221 |
-
# print("Loaded embedding successfully")
|
222 |
-
# except ImportError as e:
|
223 |
-
# print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
224 |
-
# raise e
|
225 |
-
|
226 |
-
# # Set up the Conversational Retrieval Chain
|
227 |
-
# chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
228 |
-
|
229 |
-
# chat_history = []
|
230 |
-
|
231 |
-
# def format_prompt(query):
|
232 |
-
# prompt = f"""
|
233 |
-
# You are a knowledgeable assistant with access to a comprehensive database.
|
234 |
-
# I need you to answer my question and provide related information in a specific format.
|
235 |
-
# Here's what I need:
|
236 |
-
# 1. A brief, general response to my question based on related answers retrieved.
|
237 |
-
# 2. A JSON-formatted output containing:
|
238 |
-
# - "question": The original question.
|
239 |
-
# - "answer": The detailed answer.
|
240 |
-
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
|
241 |
-
# - "question": The related question.
|
242 |
-
# - "answer": The related answer.
|
243 |
-
# Here's my question:
|
244 |
-
# {query}
|
245 |
-
# Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
246 |
-
# """
|
247 |
-
# return prompt
|
248 |
-
|
249 |
-
# def qa_infer(query):
|
250 |
-
# formatted_prompt = format_prompt(query)
|
251 |
-
# result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
252 |
-
# return result['answer']
|
253 |
-
|
254 |
-
# EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
255 |
-
# "Can BQ25896 support I2C interface?",
|
256 |
-
# "Does TDA2 vout support bt656 8-bit mode?"]
|
257 |
-
|
258 |
-
# demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
259 |
-
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|