File size: 4,034 Bytes
b12e5fe
0729c66
 
 
b12e5fe
52ec688
 
7598edf
 
52ec688
7598edf
0729c66
b12e5fe
52ec688
0729c66
dd5aa4f
 
 
7598edf
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5aa4f
7598edf
b12e5fe
0729c66
7b770ed
 
 
 
 
52ec688
7b770ed
 
 
 
 
b12e5fe
52ec688
dd5aa4f
0729c66
 
 
52ec688
0729c66
dd5aa4f
0729c66
dd5aa4f
b12e5fe
7598edf
 
 
 
 
 
 
52ec688
 
 
 
 
 
 
7598edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ec688
7598edf
 
b12e5fe
7598edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ec688
 
 
7598edf
 
 
 
 
 
 
 
 
 
 
0729c66
 
 
52ec688
abb23be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import sqlite3
import requests
import openai
import gradio as gr
import asyncio
from gtts import gTTS
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END

# Load API keys
openai.api_key = os.getenv("OPENAI_API_KEY")

# --- Business Logic Functions ---
def db_agent(query: str) -> str:
    try:
        conn = sqlite3.connect("shop.db")
        cur = conn.cursor()
        cur.execute(
            """
            SELECT product, SUM(amount) AS revenue
            FROM transactions
            WHERE date = date('now')
            GROUP BY product
            ORDER BY revenue DESC
            LIMIT 1
            """
        )
        row = cur.fetchone()
        if row:
            return f"Top product today: {row[0]} with ₹{row[1]:,.2f}"
        return "No transactions found for today."
    except sqlite3.OperationalError as e:
        return f"Database error: {e}. Please initialize 'transactions' table in shop.db."

def web_search_agent(query: str) -> str:
    try:
        resp = requests.get(
            "https://serpapi.com/search",
            params={"q": query, "api_key": os.getenv("SERPAPI_KEY")}  
        )
        snippet = resp.json().get("organic_results", [{}])[0].get("snippet", "").strip()
        if snippet:
            return llm_agent(f"Summarize: {snippet}")
    except Exception:
        pass
    return llm_agent(query)

def llm_agent(query: str) -> str:
    response = openai.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": query},
        ],
        temperature=0.2,
    )
    return response.choices[0].message.content.strip()

def stt_agent(audio_path: str) -> str:
    with open(audio_path, "rb") as afile:
        transcript = openai.audio.transcriptions.create(
            model="whisper-1",
            file=afile
        )
    return transcript.text.strip()

def tts_agent(text: str, lang: str = 'en') -> str:
    tts = gTTS(text=text, lang=lang)
    out_path = "response_audio.mp3"
    tts.save(out_path)
    return out_path

# --- LangGraph State and Nodes ---
class State(TypedDict):
    query: str
    result: str

# Routing logic based on query
def route_fn(state: State) -> str:
    q = state["query"].lower()
    if any(k in q for k in ["max revenue", "revenue"]):
        return "db"
    if any(k in q for k in ["who", "what", "when", "where"]):
        return "web"
    return "llm"

# Node implementations

def router_node(state: State) -> dict:
    return {"query": state["query"]}

def db_node(state: State) -> dict:
    return {"result": db_agent(state["query"]) }

def web_node(state: State) -> dict:
    return {"result": web_search_agent(state["query"]) }

def llm_node(state: State) -> dict:
    return {"result": llm_agent(state["query"]) }

# Build the LangGraph
builder = StateGraph(State)
builder.add_node("router", router_node)
builder.set_entry_point("router")
builder.set_conditional_entry_point(
    route_fn,
    path_map={"db": "db", "web": "web", "llm": "llm"}
)
builder.add_node("db", db_node)
builder.add_node("web", web_node)
builder.add_node("llm", llm_node)
builder.add_edge(START, "router")
builder.add_edge("db", END)
builder.add_edge("web", END)
builder.add_edge("llm", END)
graph = builder.compile()

# Handler integrates STT/TTS and graph execution
def handle_query(audio_or_text: str):
    is_audio = audio_or_text.endswith('.wav') or audio_or_text.endswith('.mp3')
    if is_audio:
        query = stt_agent(audio_or_text)
    else:
        query = audio_or_text

    state = graph.invoke({"query": query})
    response = state["result"]

    if is_audio:
        audio_path = tts_agent(response)
        return response, audio_path
    return response

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("## Shop Voice-Box Assistant (Speech In/Out)")
    inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak or type your question")