File size: 5,236 Bytes
0f5ffe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b9c07
0f5ffe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565a2a0
0f5ffe4
 
 
 
 
 
 
 
 
43b9c07
0f5ffe4
 
 
0f3fb53
0f5ffe4
 
 
 
 
7e57720
 
0f5ffe4
 
 
 
 
 
0f3fb53
 
0f5ffe4
 
 
 
 
 
 
052069b
 
 
 
 
 
aac216b
0f5ffe4
aa14789
 
 
 
 
 
 
 
 
 
 
56d3f6f
aa14789
0f5ffe4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import json
import numpy as np
from tokenizers import Tokenizer
import onnxruntime as ort
from huggingface_hub import hf_hub_download
import gradio as gr

class ONNXInferencePipeline:
    def __init__(self, repo_id):
        # Retrieve the Hugging Face token from the environment variable
        hf_token = os.getenv("HF_TOKEN")
        if hf_token is None:
            raise ValueError("HF_TOKEN environment variable is not set.")

        # Download files from Hugging Face Hub using the token
        self.onnx_path = hf_hub_download(repo_id=repo_id, filename="model.onnx", use_auth_token=hf_token)
        self.tokenizer_path = hf_hub_download(repo_id=repo_id, filename="train_bpe_tokenizer.json", use_auth_token=hf_token)
        self.config_path = hf_hub_download(repo_id=repo_id, filename="hyperparameters.json", use_auth_token=hf_token)

        # Load configuration
        with open(self.config_path) as f:
            self.config = json.load(f)

        # Initialize tokenizer
        self.tokenizer = Tokenizer.from_file(self.tokenizer_path)
        self.max_len = self.config["tokenizer"]["max_len"]

        # Initialize ONNX runtime session
        self.session = ort.InferenceSession(self.onnx_path)
        self.providers = ['CPUExecutionProvider']  # Use CUDA if available
        if 'CUDAExecutionProvider' in ort.get_available_providers():
            self.providers = ['CUDAExecutionProvider']
        self.session.set_providers(self.providers)

    def preprocess(self, text):
        encoding = self.tokenizer.encode(text)
        ids = encoding.ids[:self.max_len]
        padding = [0] * (self.max_len - len(ids))
        return np.array(ids + padding, dtype=np.int64).reshape(1, -1)

    def predict(self, text):
        # Preprocess
        input_array = self.preprocess(text)

        # Run inference
        results = self.session.run(
            None,
            {'input': input_array}
        )

        # Post-process
        logits = results[0]
        probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=1, keepdims=True)
        predicted_class = int(np.argmax(probabilities))

        # Map to labels
        class_labels = ['Inappropriate Content', 'Appropriate']
        return {
            'label': class_labels[predicted_class],
            'confidence': float(probabilities[0][predicted_class]),
            'probabilities': probabilities[0].tolist()
        }

# Example usage
if __name__ == "__main__":
    # Initialize the pipeline with the Hugging Face repository ID
    pipeline = ONNXInferencePipeline(repo_id="iimran/abuse-detector")

    # Example texts for testing
    example_texts = [
        "You're a worthless piece of garbage who should die"
    ]
    
    for text in example_texts:
        result = pipeline.predict(text)
        print(f"Input: {text}")
        print(f"Prediction: {result['label']} ")
        #print(f"Probabilities: Inappropriate={result['probabilities'][0]:.2%}, Not Inappropriate={result['probabilities'][1]:.2%}")
        print("-" * 80)

    # Define a function for Gradio to use
    def gradio_predict(text):
        result = pipeline.predict(text)
        return (
            f"Prediction: {result['label']} \n"
            #f"Probabilities: Inappropriate={result['probabilities'][0]:.2%}, Not Inappropriate={result['probabilities'][1]:.2%}"
        )

    # Create a Gradio interface
    iface = gr.Interface(
        fn=gradio_predict,
        inputs=gr.Textbox(lines=7, placeholder="Enter text here..."),
        outputs="text",
        title="RudeRater - Offensive Language Detector",
        description=(
        "RudeRater is designed to identify inappropriate content in text. "
        "It analyzes input for offensive language and explicit content. "
        "While it's trained on a compact dataset and may not catch highly nuanced or sophisticated language, "
        "it effectively detects day-to-day offensive language commonly used in conversations."
    ),
        examples=[
    # Explicitly offensive examples
    "Congrats, you fuckbrain arsehole, you’ve outdone yourself in stupidity. A real cock-up of a human—should we clap for your bollocks-faced greatness or just pity you?",
    "You’re a mad bastard, but I’d still grab a beer with you! Fuck around all you like, you cockheaded legend—your arsehole antics are bloody brilliant.",
    "Your mother should have done better raising such a useless idiot.",

    # Neutral or appropriate examples
    "Hello HR, I hope this message finds you well. I’m writing to express my gratitude for the opportunity to interview for the [Job Title] position last week. It was a pleasure to meet you and learn more about the role and your team.",
    "Thank you for your time and consideration. Please don’t hesitate to reach out if you need additional information—I’d be happy to discuss further. Looking forward to hearing from you soon!",
    "The weather today is lovely, and I’m looking forward to a productive day at work.",

    # Mixed examples (some offensive, some neutral)
    "I appreciate your help, but honestly, you’re such a clueless idiot sometimes. Still, thanks for trying."
]
    )

    # Launch the Gradio app
    iface.launch()