Abuse-Detection / app.py
iimran's picture
Update app.py
aac216b verified
raw
history blame
4.5 kB
import os
import json
import numpy as np
from tokenizers import Tokenizer
import onnxruntime as ort
from huggingface_hub import hf_hub_download
import gradio as gr
class ONNXInferencePipeline:
def __init__(self, repo_id):
# Retrieve the Hugging Face token from the environment variable
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
raise ValueError("HF_TOKEN environment variable is not set.")
# Download files from Hugging Face Hub using the token
self.onnx_path = hf_hub_download(repo_id=repo_id, filename="RudeRater.onnx", use_auth_token=hf_token)
self.tokenizer_path = hf_hub_download(repo_id=repo_id, filename="train_bpe_tokenizer.json", use_auth_token=hf_token)
self.config_path = hf_hub_download(repo_id=repo_id, filename="hyperparameters.json", use_auth_token=hf_token)
# Load configuration
with open(self.config_path) as f:
self.config = json.load(f)
# Initialize tokenizer
self.tokenizer = Tokenizer.from_file(self.tokenizer_path)
self.max_len = self.config["tokenizer"]["max_len"]
# Initialize ONNX runtime session
self.session = ort.InferenceSession(self.onnx_path)
self.providers = ['CPUExecutionProvider'] # Use CUDA if available
if 'CUDAExecutionProvider' in ort.get_available_providers():
self.providers = ['CUDAExecutionProvider']
self.session.set_providers(self.providers)
def preprocess(self, text):
encoding = self.tokenizer.encode(text)
ids = encoding.ids[:self.max_len]
padding = [0] * (self.max_len - len(ids))
return np.array(ids + padding, dtype=np.int64).reshape(1, -1)
def predict(self, text):
# Preprocess
input_array = self.preprocess(text)
# Run inference
results = self.session.run(
None,
{'input': input_array}
)
# Post-process
logits = results[0]
probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=1, keepdims=True)
predicted_class = int(np.argmax(probabilities))
# Map to labels
class_labels = ['Inappropriate Content', 'Not Inappropriate']
return {
'label': class_labels[predicted_class],
'confidence': float(probabilities[0][predicted_class]),
'probabilities': probabilities[0].tolist()
}
# Example usage
if __name__ == "__main__":
# Initialize the pipeline with the Hugging Face repository ID
pipeline = ONNXInferencePipeline(repo_id="iimran/RudeRater")
# Example texts for testing
example_texts = [
"You're a worthless piece of garbage who should die"
]
for text in example_texts:
result = pipeline.predict(text)
print(f"Input: {text}")
print(f"Prediction: {result['label']} ")
#print(f"Probabilities: Inappropriate={result['probabilities'][0]:.2%}, Not Inappropriate={result['probabilities'][1]:.2%}")
print("-" * 80)
# Define a function for Gradio to use
def gradio_predict(text):
result = pipeline.predict(text)
return (
f"Prediction: {result['label']} \n"
#f"Probabilities: Inappropriate={result['probabilities'][0]:.2%}, Not Inappropriate={result['probabilities'][1]:.2%}"
)
# Create a Gradio interface
iface = gr.Interface(
fn=gradio_predict,
inputs=gr.Textbox(lines=7, placeholder="Enter text here..."),
outputs="text",
title="RudeRater - Offensive Language Detector",
description=(
"RudeRater is designed to identify inappropriate content in text. "
"It analyzes input for offensive language and explicit content. "
"While it's trained on a compact dataset and may not catch highly nuanced or sophisticated language, "
"it effectively detects day-to-day offensive language commonly used in conversations."
),
examples=[
"Congrats, you fuckbrain arsehole, you’ve outdone yourself in stupidity. A real cock-up of a human—should we clap for your bollocks-faced greatness or just pity you?",
"You’re a mad bastard, but I’d still grab a beer with you! Fuck around all you like, you cockheaded legend—your arsehole antics are bloody brilliant.",
"Your mother should have done better raising such a useless idiot"
]
)
# Launch the Gradio app
iface.launch()