import os import json import numpy as np from tokenizers import Tokenizer import onnxruntime as ort from huggingface_hub import hf_hub_download import gradio as gr class ONNXInferencePipeline: def __init__(self, repo_id): # Retrieve the Hugging Face token from the environment variable hf_token = os.getenv("HF_TOKEN") if hf_token is None: raise ValueError("HF_TOKEN environment variable is not set.") # Download files from Hugging Face Hub using the token self.onnx_path = hf_hub_download(repo_id=repo_id, filename="RudeRater.onnx", use_auth_token=hf_token) self.tokenizer_path = hf_hub_download(repo_id=repo_id, filename="train_bpe_tokenizer.json", use_auth_token=hf_token) self.config_path = hf_hub_download(repo_id=repo_id, filename="hyperparameters.json", use_auth_token=hf_token) # Load configuration with open(self.config_path) as f: self.config = json.load(f) # Initialize tokenizer self.tokenizer = Tokenizer.from_file(self.tokenizer_path) self.max_len = self.config["tokenizer"]["max_len"] # Initialize ONNX runtime session self.session = ort.InferenceSession(self.onnx_path) self.providers = ['CPUExecutionProvider'] # Use CUDA if available if 'CUDAExecutionProvider' in ort.get_available_providers(): self.providers = ['CUDAExecutionProvider'] self.session.set_providers(self.providers) def preprocess(self, text): encoding = self.tokenizer.encode(text) ids = encoding.ids[:self.max_len] padding = [0] * (self.max_len - len(ids)) return np.array(ids + padding, dtype=np.int64).reshape(1, -1) def predict(self, text): # Preprocess input_array = self.preprocess(text) # Run inference results = self.session.run( None, {'input': input_array} ) # Post-process logits = results[0] probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=1, keepdims=True) predicted_class = int(np.argmax(probabilities)) # Map to labels class_labels = ['Inappropriate Content', 'Not Inappropriate'] return { 'label': class_labels[predicted_class], 'confidence': float(probabilities[0][predicted_class]), 'probabilities': probabilities[0].tolist() } # Example usage if __name__ == "__main__": # Initialize the pipeline with the Hugging Face repository ID pipeline = ONNXInferencePipeline(repo_id="iimran/RudeRater") # Example texts for testing example_texts = [ "This content contains explicit language and violent threats", "The weather today is pleasant and suitable for all ages", "You're a worthless piece of garbage who should die", "Please remember to submit your reports by Friday" ] for text in example_texts: result = pipeline.predict(text) print(f"Input: {text}") print(f"Prediction: {result['label']} ({result['confidence']:.2%})") print(f"Probabilities: Inappropriate={result['probabilities'][0]:.2%}, Not Inappropriate={result['probabilities'][1]:.2%}") print("-" * 80) # Define a function for Gradio to use def gradio_predict(text): result = pipeline.predict(text) return ( f"Prediction: {result['label']} ({result['confidence']:.2%})\n" f"Probabilities: Inappropriate={result['probabilities'][0]:.2%}, Not Inappropriate={result['probabilities'][1]:.2%}" ) # Create a Gradio interface iface = gr.Interface( fn=gradio_predict, inputs=gr.Textbox(lines=7, placeholder="Enter text here..."), outputs="text", title="RudeRater - Content Appropriateness Classifier", description="RudeRater is designed to identify inappropriate content in text. It analyzes input for offensive language, explicit content, or harmful material. Enter text to check its appropriateness.", examples=[ "This is completely unacceptable behavior and I'll make sure you regret it", "The community guidelines clearly prohibit any form of discrimination", "Your mother should have done better raising such a useless idiot", "We appreciate your feedback and will improve our services", "I'm going to find you and make you pay for what you've done", "The park maintenance schedule has been updated for summer" ] ) # Launch the Gradio app iface.launch()