Spaces:
Running
Running
File size: 2,260 Bytes
b9bfbd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import torch
from transformers import BartTokenizer, BartForConditionalGeneration
# Load the model and tokenizer from Hugging Face hub
model_name = "iimran/SAM-TheSummariserV2"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
model.eval() # Set the model to evaluation mode
# Function to summarize the input text
def summarize(input_text):
# Tokenize the input text with truncation (adjust max_length as needed)
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
# Create global attention mask: assign global attention to the first token (required by LED)
global_attention_mask = torch.zeros(inputs["input_ids"].shape, dtype=torch.long)
global_attention_mask[:, 0] = 1
# Generate the summary using beam search (you can adjust parameters as needed)
summary_ids = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
global_attention_mask=global_attention_mask,
max_length=512,
num_beams=4,
early_stopping=True,
)
# Decode the generated ids to a summary string, skipping special tokens
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Create a Gradio interface with a title, description, submit button, and larger input text area
iface = gr.Interface(
fn=summarize, # Function that handles the summarization
inputs=gr.Textbox(
label="Enter Text to Summarize",
lines=10, # Make the input area larger by increasing the number of lines
placeholder="Paste or type the text you want to summarize here...",
),
outputs=gr.Textbox(
label="Summary",
lines=5, # Adjust output area size (number of lines)
placeholder="Summary will appear here..."
),
live=False, # Disable live updates, use the submit button instead
allow_flagging="never", # Optionally disable flagging
title="SAM - The Summariser", # Title of the page
description="SAM is a model which will help summarize large knowledge base articles into small summaries.", # Description of the model
)
# Launch the interface
iface.launch() |