Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import BartTokenizer, BartForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# Load model and tokenizer from Hugging Face hub using the provided model name
|
| 5 |
model_name = "iimran/SAM-TheSummariserV2"
|
| 6 |
-
tokenizer = BartTokenizer.from_pretrained(model_name)
|
| 7 |
-
model = BartForConditionalGeneration.from_pretrained(model_name)
|
| 8 |
|
| 9 |
-
# Define the summarization function
|
| 10 |
def summarize(input_text):
|
| 11 |
# Tokenize the input text with truncation
|
| 12 |
inputs = tokenizer(input_text, max_length=1024, truncation=True, return_tensors="pt")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import BartTokenizer, BartForConditionalGeneration
|
| 3 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 4 |
+
if hf_token is None:
|
| 5 |
+
raise ValueError("HF_TOKEN environment variable is not set.")
|
| 6 |
|
| 7 |
# Load model and tokenizer from Hugging Face hub using the provided model name
|
| 8 |
model_name = "iimran/SAM-TheSummariserV2"
|
| 9 |
+
tokenizer = BartTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
| 10 |
+
model = BartForConditionalGeneration.from_pretrained(model_name, use_auth_token=hf_token)
|
| 11 |
|
|
|
|
| 12 |
def summarize(input_text):
|
| 13 |
# Tokenize the input text with truncation
|
| 14 |
inputs = tokenizer(input_text, max_length=1024, truncation=True, return_tensors="pt")
|