iimran commited on
Commit
d7c6538
·
verified ·
1 Parent(s): 69fb1af

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+ import os
5
+
6
+ # Get Hugging Face token from environment variable
7
+ HF_TOKEN = os.getenv("HF_TOKEN")
8
+ if not HF_TOKEN:
9
+ raise ValueError("Please set HF_TOKEN environment variable with your Hugging Face access token")
10
+
11
+ # Load model and tokenizer
12
+ model_name = "iimran/AnalyserV1"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN)
14
+ model = AutoModelForSequenceClassification.from_pretrained(model_name, token=HF_TOKEN)
15
+
16
+ def classify_complaint(text):
17
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
18
+ with torch.no_grad():
19
+ outputs = model(**inputs)
20
+ return model.config.id2label[torch.argmax(outputs.logits).item()]
21
+
22
+ # Create Gradio interface
23
+ demo = gr.Interface(
24
+ fn=classify_complaint,
25
+ inputs=gr.Textbox(lines=3, placeholder="Enter your complaint here...", label="Complaint Text"),
26
+ outputs=gr.Label(label="Predicted Category"),
27
+ title="Complaint Category Classifier",
28
+ description="Automatically classify community complaints into specific categories",
29
+ examples=[
30
+ ["I wanted to bring to your attention that a huge big truck has been parked on Main Street"],
31
+ ["There are overgrown bushes on Oak Road that pose a fire risk"],
32
+ ["Excessive noise from construction site during night hours"]
33
+ ]
34
+ )
35
+
36
+ if __name__ == "__main__":
37
+ demo.launch()