Update app.py
Browse files
app.py
CHANGED
@@ -8,116 +8,109 @@ import gradio as gr
|
|
8 |
|
9 |
class ONNXInferencePipeline:
|
10 |
def __init__(self, repo_id):
|
11 |
-
|
12 |
-
# Note: The ONNX model file is now "moodmeter.onnx"
|
13 |
-
self.onnx_path = hf_hub_download(repo_id=repo_id, filename="minddmeter.onnx")
|
14 |
self.tokenizer_path = hf_hub_download(repo_id=repo_id, filename="train_bpe_tokenizer.json")
|
15 |
self.config_path = hf_hub_download(repo_id=repo_id, filename="hyperparameters.json")
|
16 |
|
17 |
-
# Load configuration from
|
18 |
-
#
|
19 |
with open(self.config_path, "r") as f:
|
20 |
self.config = json.load(f)
|
21 |
|
22 |
-
# Initialize the tokenizer
|
23 |
self.tokenizer = Tokenizer.from_file(self.tokenizer_path)
|
24 |
-
|
|
|
25 |
|
26 |
-
# Initialize the ONNX runtime session
|
27 |
self.session = ort.InferenceSession(self.onnx_path)
|
28 |
-
# Use CUDA if available
|
29 |
self.providers = ['CPUExecutionProvider']
|
30 |
if 'CUDAExecutionProvider' in ort.get_available_providers():
|
31 |
self.providers = ['CUDAExecutionProvider']
|
32 |
self.session.set_providers(self.providers)
|
33 |
|
34 |
def preprocess(self, text):
|
35 |
-
"""
|
36 |
-
Tokenize the input text, truncate or pad it to the maximum length, and return a numpy array.
|
37 |
-
"""
|
38 |
encoding = self.tokenizer.encode(text)
|
39 |
-
# Truncate
|
40 |
ids = encoding.ids[:self.max_len]
|
41 |
-
# Pad with zeros if
|
42 |
padding = [0] * (self.max_len - len(ids))
|
43 |
return np.array(ids + padding, dtype=np.int64).reshape(1, -1)
|
44 |
|
45 |
def predict(self, text):
|
46 |
"""
|
47 |
-
Given an input text string, run inference and return
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
-
# Preprocess the text
|
53 |
input_array = self.preprocess(text)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
# Compute softmax probabilities from the logits.
|
59 |
-
logits = results[0]
|
60 |
exp_logits = np.exp(logits)
|
61 |
probabilities = exp_logits / np.sum(exp_logits, axis=1, keepdims=True)
|
62 |
predicted_class = int(np.argmax(probabilities))
|
63 |
-
|
64 |
-
|
65 |
-
# Here we assume the model outputs: 0 -> "neg" and 1 -> "pos"
|
66 |
-
label_mapping = {'neg': 'Negative', 'pos': 'Positive'}
|
67 |
-
class_labels = ['neg', 'pos']
|
68 |
-
predicted_label = label_mapping[class_labels[predicted_class]]
|
69 |
confidence = float(probabilities[0][predicted_class])
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
-
# Example usage and Gradio Interface
|
79 |
if __name__ == "__main__":
|
80 |
-
# Initialize the pipeline with the correct Hugging Face repository ID.
|
81 |
pipeline = ONNXInferencePipeline(repo_id="iimran/MindMeter")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
print(f"Confidence Scores: Negative={result['probabilities'][0]:.2%}, Positive={result['probabilities'][1]:.2%}")
|
95 |
-
print("-" * 80)
|
96 |
|
97 |
-
# Define a function for Gradio to call.
|
98 |
def gradio_predict(text):
|
99 |
result = pipeline.predict(text)
|
100 |
-
return
|
101 |
-
f"Prediction: {result['label']} ({result['confidence']:.2%})\n"
|
102 |
-
f"Confidence Scores: Negative={result['probabilities'][0]:.2%}, Positive={result['probabilities'][1]:.2%}"
|
103 |
-
)
|
104 |
|
105 |
-
# Create the Gradio interface.
|
106 |
iface = gr.Interface(
|
107 |
fn=gradio_predict,
|
108 |
-
inputs=gr.Textbox(lines=7, placeholder="Enter text here..."),
|
109 |
outputs="text",
|
110 |
-
title="MindMeter –
|
111 |
description=(
|
112 |
-
"MindMeter
|
113 |
-
"
|
114 |
-
"displaying a Low Stressed, Medium Stressed, High Stressed or not stressed scores. "
|
115 |
-
"Enter your text below to see the analysis."
|
116 |
),
|
117 |
examples=[
|
118 |
-
"
|
119 |
-
"I
|
120 |
-
"
|
121 |
]
|
122 |
)
|
123 |
|
|
|
8 |
|
9 |
class ONNXInferencePipeline:
|
10 |
def __init__(self, repo_id):
|
11 |
+
self.onnx_path = hf_hub_download(repo_id=repo_id, filename="mindmeter.onnx")
|
|
|
|
|
12 |
self.tokenizer_path = hf_hub_download(repo_id=repo_id, filename="train_bpe_tokenizer.json")
|
13 |
self.config_path = hf_hub_download(repo_id=repo_id, filename="hyperparameters.json")
|
14 |
|
15 |
+
# Load configuration from hyperparameters.json.
|
16 |
+
# This file should have a key "MAX_LEN" specifying the maximum token sequence length.
|
17 |
with open(self.config_path, "r") as f:
|
18 |
self.config = json.load(f)
|
19 |
|
20 |
+
# Initialize the tokenizer from file.
|
21 |
self.tokenizer = Tokenizer.from_file(self.tokenizer_path)
|
22 |
+
# Use the maximum sequence length from the hyperparameters.
|
23 |
+
self.max_len = self.config["MAX_LEN"]
|
24 |
|
25 |
+
# Initialize the ONNX runtime session.
|
26 |
self.session = ort.InferenceSession(self.onnx_path)
|
27 |
+
# Use CUDA if available, otherwise default to CPU.
|
28 |
self.providers = ['CPUExecutionProvider']
|
29 |
if 'CUDAExecutionProvider' in ort.get_available_providers():
|
30 |
self.providers = ['CUDAExecutionProvider']
|
31 |
self.session.set_providers(self.providers)
|
32 |
|
33 |
def preprocess(self, text):
|
|
|
|
|
|
|
34 |
encoding = self.tokenizer.encode(text)
|
35 |
+
# Truncate to self.max_len tokens
|
36 |
ids = encoding.ids[:self.max_len]
|
37 |
+
# Pad with zeros if necessary
|
38 |
padding = [0] * (self.max_len - len(ids))
|
39 |
return np.array(ids + padding, dtype=np.int64).reshape(1, -1)
|
40 |
|
41 |
def predict(self, text):
|
42 |
"""
|
43 |
+
Given an input text string, run inference and return only the granular stress level.
|
44 |
+
The model outputs:
|
45 |
+
0 -> "Not Stressed"
|
46 |
+
1 -> "Stressed"
|
47 |
+
When the model predicts "Stressed", a confidence-based thresholding is applied:
|
48 |
+
- confidence < 0.40: "Not Stressed" (fallback)
|
49 |
+
- 0.40 ≤ confidence < 0.65: "Low Stress"
|
50 |
+
- 0.65 ≤ confidence < 0.90: "Moderate Stress"
|
51 |
+
- 0.90 ≤ confidence: "High Stress"
|
52 |
"""
|
|
|
53 |
input_array = self.preprocess(text)
|
54 |
|
55 |
+
outputs = self.session.run(None, {"input": input_array})
|
56 |
+
logits = outputs[0]
|
57 |
|
|
|
|
|
58 |
exp_logits = np.exp(logits)
|
59 |
probabilities = exp_logits / np.sum(exp_logits, axis=1, keepdims=True)
|
60 |
predicted_class = int(np.argmax(probabilities))
|
61 |
+
class_labels = ["Not Stressed", "Stressed"]
|
62 |
+
predicted_label = class_labels[predicted_class]
|
|
|
|
|
|
|
|
|
63 |
confidence = float(probabilities[0][predicted_class])
|
64 |
|
65 |
+
if predicted_label == "Stressed":
|
66 |
+
# Use the confidence of the "Stressed" class
|
67 |
+
stress_confidence = confidence
|
68 |
+
if stress_confidence < 0.40:
|
69 |
+
stress_level = "Not Stressed" # Fallback (unlikely)
|
70 |
+
elif 0.40 <= stress_confidence < 0.65:
|
71 |
+
stress_level = "Low Stress"
|
72 |
+
elif 0.65 <= stress_confidence < 0.90:
|
73 |
+
stress_level = "Moderate Stress"
|
74 |
+
else: # 0.90 ≤ stress_confidence ≤ 1.00
|
75 |
+
stress_level = "High Stress"
|
76 |
+
else:
|
77 |
+
stress_level = "Not Stressed"
|
78 |
+
|
79 |
+
return {"stress_level": stress_level}
|
80 |
|
81 |
|
|
|
82 |
if __name__ == "__main__":
|
|
|
83 |
pipeline = ONNXInferencePipeline(repo_id="iimran/MindMeter")
|
84 |
|
85 |
+
text1 = "Yay! what a happy life"
|
86 |
+
text2 = "I’ve missed another loan payment, and I don’t know how I’m going to catch up. The pressure is unbearable."
|
87 |
+
text3 = "I am upset about how badly life is trating me these days, its shit and i wanna end it"
|
88 |
+
|
89 |
+
result1 = pipeline.predict(text1)
|
90 |
+
result2 = pipeline.predict(text2)
|
91 |
+
result3 = pipeline.predict(text3)
|
92 |
+
|
93 |
+
print(f"Prediction for text 1: {result1}")
|
94 |
+
print(f"Prediction for text 2: {result2}")
|
95 |
+
print(f"Prediction for text 3: {result3}")
|
|
|
|
|
96 |
|
|
|
97 |
def gradio_predict(text):
|
98 |
result = pipeline.predict(text)
|
99 |
+
return result["stress_level"]
|
|
|
|
|
|
|
100 |
|
|
|
101 |
iface = gr.Interface(
|
102 |
fn=gradio_predict,
|
103 |
+
inputs=gr.Textbox(lines=7, placeholder="Enter your text here..."),
|
104 |
outputs="text",
|
105 |
+
title="MindMeter – Granular Stress Level Predictor",
|
106 |
description=(
|
107 |
+
"MindMeter predicts the granular stress level from your text input. "
|
108 |
+
"The possible outputs are: Not Stressed, Low Stress, Moderate Stress, or High Stress."
|
|
|
|
|
109 |
),
|
110 |
examples=[
|
111 |
+
"Yay! what a happy life",
|
112 |
+
"I’ve missed another loan payment, and I don’t know how I’m going to catch up. The pressure is unbearable.",
|
113 |
+
"I am upset about how badly life is trating me these days, its shit and i wanna end it"
|
114 |
]
|
115 |
)
|
116 |
|