File size: 18,356 Bytes
1292ed1
74a6ec1
8622a36
74a6ec1
695c0fc
b922996
8627d53
 
 
 
 
 
 
3159d0b
74a6ec1
 
 
bad3bd8
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8627d53
 
 
 
 
 
 
 
1dd8568
 
 
 
8627d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd8568
 
8627d53
 
 
 
 
 
 
3159d0b
 
 
 
 
 
 
 
 
74a6ec1
3159d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a6ec1
1292ed1
8627d53
 
 
 
 
74a6ec1
8627d53
 
 
 
 
 
 
 
74a6ec1
8627d53
1292ed1
8627d53
cd87f3e
 
8622a36
cd87f3e
8622a36
 
3ff9487
1dd8568
65ff7ae
 
 
 
 
 
 
1dd8568
8627d53
 
 
 
 
 
3ff9487
cd87f3e
8627d53
 
cd87f3e
6f37b53
8622a36
cd87f3e
3ff9487
1dd8568
 
8622a36
6f37b53
8622a36
3ff9487
1dd8568
3ff9487
8622a36
1dd8568
3ff9487
8622a36
8627d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd8568
1292ed1
74a6ec1
1dd8568
 
 
4db3cf5
3ff9487
1dd8568
 
 
 
 
 
 
8627d53
6f37b53
 
3ff9487
12df84a
 
1dd8568
 
 
6f37b53
1dd8568
 
 
6f37b53
3159d0b
12df84a
 
 
3ff9487
3159d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ff9487
8627d53
1dd8568
8627d53
1dd8568
 
8627d53
1dd8568
 
8627d53
1dd8568
 
 
 
 
65ff7ae
6f37b53
3ff9487
 
1dd8568
cd87f3e
8627d53
cd87f3e
 
12fc990
65ff7ae
1dd8568
 
 
 
 
12fc990
3159d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fc990
8627d53
1dd8568
 
8627d53
1dd8568
8627d53
1dd8568
 
65ff7ae
1dd8568
 
 
 
 
8627d53
1dd8568
 
 
 
 
 
 
 
 
 
8627d53
1b99220
1dd8568
 
65ff7ae
1dd8568
8627d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fc990
1dd8568
 
 
12fc990
1dd8568
3159d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd8568
8627d53
1dd8568
 
8627d53
1dd8568
65ff7ae
8627d53
1dd8568
8627d53
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
65ff7ae
61d1238
3ff9487
 
12fc990
8627d53
a083a98
 
 
 
 
12fc990
a083a98
cd87f3e
 
 
12fc990
3ff9487
8627d53
12fc990
3ff9487
1dd8568
 
65ff7ae
1dd8568
cd87f3e
3ff9487
1292ed1
65ff7ae
1292ed1
 
3159d0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os

# Import transformers and cache the help agent for performance
@st.cache_resource
def get_help_agent():
    from transformers import pipeline
    # Using BlenderBot 400M Distill as the public conversational model (used elsewhere)
    return pipeline("conversational", model="facebook/blenderbot-400M-distill")

# Custom CSS for professional look (fixed text color) with speech recognition
def inject_custom_css():
    st.markdown("""
    <style>
        @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap');

        * {
            font-family: 'Poppins', sans-serif;
        }

        .title {
            font-size: 3rem !important;
            font-weight: 700 !important;
            color: #6C63FF !important;
            text-align: center;
            margin-bottom: 0.5rem;
        }

        .subtitle {
            font-size: 1.2rem !important;
            text-align: center;
            color: #666 !important;
            margin-bottom: 2rem;
        }

        .question-box {
            background: #F8F9FA;
            border-radius: 15px;
            padding: 2rem;
            margin: 1.5rem 0;
            box-shadow: 0 4px 6px rgba(0,0,0,0.1);
            color: black !important;
        }

        .answer-btn {
            border-radius: 12px !important;
            padding: 0.5rem 1.5rem !important;
            font-weight: 600 !important;
            margin: 0.5rem !important;
        }

        .yes-btn {
            background: #6C63FF !important;
            color: white !important;
        }

        .no-btn {
            background: #FF6B6B !important;
            color: white !important;
        }

        .final-reveal {
            animation: fadeIn 2s;
            font-size: 2.5rem;
            color: #6C63FF;
            text-align: center;
            margin: 2rem 0;
        }

        @keyframes fadeIn {
            from { opacity: 0; }
            to { opacity: 1; }
        }

        .confetti {
            position: fixed;
            top: 0;
            left: 0;
            width: 100%;
            height: 100%;
            pointer-events: none;
            z-index: 1000;
        }
        
        .confidence-meter {
            height: 10px;
            background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%);
            border-radius: 5px;
            margin: 10px 0;
        }
        
        .mic-btn {
            margin-top: 29px;
            border: none;
            background: none;
            cursor: pointer;
            font-size: 1.5em;
            padding: 0;
        }
    </style>
    <script>
    function startSpeechRecognition(inputId) {
        const recognition = new (window.SpeechRecognition || window.webkitSpeechRecognition)();
        recognition.lang = 'en-US';
        recognition.interimResults = false;
        recognition.maxAlternatives = 1;

        recognition.onresult = function(event) {
            const transcript = event.results[0][0].transcript.toLowerCase();
            const inputElement = document.getElementById(inputId);
            if (inputElement) {
                inputElement.value = transcript;
                // Trigger Streamlit's input change detection
                const event = new Event('input', { bubbles: true });
                inputElement.dispatchEvent(event);
            }
        };

        recognition.onerror = function(event) {
            console.error('Speech recognition error', event.error);
        };

        recognition.start();
    }
    </script>
    """, unsafe_allow_html=True)

# Confetti animation
def show_confetti():
    html("""
    <canvas id="confetti-canvas" class="confetti"></canvas>
    <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
    <script>
    const canvas = document.getElementById('confetti-canvas');
    const confetti = confetti.create(canvas, { resize: true });
    confetti({
        particleCount: 150,
        spread: 70,
        origin: { y: 0.6 }
    });
    setTimeout(() => { canvas.remove(); }, 5000);
    </script>
    """)

# Enhanced AI question generation for guessing game using Llama model
def ask_llama(conversation_history, category, is_final_guess=False):
    api_url = "https://api.groq.com/openai/v1/chat/completions"
    headers = {
        "Authorization": "Bearer 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",
        "Content-Type": "application/json"
    }

    system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, country, city or population
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""

    if is_final_guess:
        prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
    else:
        prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."

    messages = [
        {"role": "system", "content": system_prompt},
        *conversation_history,
        {"role": "user", "content": prompt}
    ]

    data = {
        "model": "llama-3.3-70b-versatile",
        "messages": messages,
        "temperature": 0.7 if is_final_guess else 0.8,
        "max_tokens": 100
    }

    try:
        response = requests.post(api_url, headers=headers, json=data)
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]
    except Exception as e:
        st.error(f"Error calling Llama API: {str(e)}")
        return "Could not generate question"

# New function for the help AI assistant using the Hugging Face InferenceClient
def ask_help_agent(query):
    try:
        from huggingface_hub import InferenceClient
        # Initialize the client with the provided model
        client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=os.environ.get("HF_HUB_TOKEN"))
        system_message = "You are a friendly Chatbot."
        
        # Build history from session state (if any)
        history = []
        if "help_conversation" in st.session_state:
            for msg in st.session_state.help_conversation:
                # Each history entry is a tuple: (user query, assistant response)
                history.append((msg.get("query", ""), msg.get("response", "")))
        
        messages = [{"role": "system", "content": system_message}]
        for user_msg, bot_msg in history:
            if user_msg:
                messages.append({"role": "user", "content": user_msg})
            if bot_msg:
                messages.append({"role": "assistant", "content": bot_msg})
        messages.append({"role": "user", "content": query})
        
        response_text = ""
        # Using streaming to collect the entire response from the model
        for message in client.chat_completion(
            messages,
            max_tokens=150,
            stream=True,
            temperature=0.7,
            top_p=0.95,
        ):
            token = message.choices[0].delta.content
            response_text += token
        return response_text
    except Exception as e:
        return f"Error in help agent: {str(e)}"

# Main game logic
def main():
    inject_custom_css()

    st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
    st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True)

    if 'game_state' not in st.session_state:
        st.session_state.game_state = "start"
        st.session_state.questions = []
        st.session_state.current_q = 0
        st.session_state.answers = []
        st.session_state.conversation_history = []
        st.session_state.category = None
        st.session_state.final_guess = None
        st.session_state.help_conversation = []  # separate history for help agent

    # Start screen
    if st.session_state.game_state == "start":
        st.markdown("""
        <div class="question-box">
            <h3>Welcome to <span style='color:#6C63FF;'>KASOTI ๐ŸŽฏ</span></h3>
            <p>Think of something and I'll try to guess it in 20 questions or less!</p>
            <p>Choose a category:</p>
            <ul>
                <li><strong>Person</strong> - celebrity, fictional character, historical figure</li>
                <li><strong>Place</strong> - city, country, landmark, geographical location</li>
                <li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li>
            </ul>
            <p>Type or speak your category below to begin:</p>
        </div>
        """, unsafe_allow_html=True)

        with st.form("start_form"):
            # Create columns for input and microphone button
            col1, col2 = st.columns([4, 1])
            with col1:
                category_input = st.text_input(
                    "Enter category (person/place/object):",
                    key="category_input"
                ).strip().lower()
            
            with col2:
                st.markdown(
                    """
                    <button type="button" onclick="startSpeechRecognition('text_input-category_input')" 
                            class="mic-btn">
                        ๐ŸŽค
                    </button>
                    """,
                    unsafe_allow_html=True
                )
            
            if st.form_submit_button("Start Game"):
                if not category_input:
                    st.error("Please enter a category!")
                elif category_input not in ["person", "place", "object"]:
                    st.error("Please enter either 'person', 'place', or 'object'!")
                else:
                    st.session_state.category = category_input
                    first_question = ask_llama([
                        {"role": "user", "content": "Ask your first strategic yes/no question."}
                    ], category_input)
                    st.session_state.questions = [first_question]
                    st.session_state.conversation_history = [
                        {"role": "assistant", "content": first_question}
                    ]
                    st.session_state.game_state = "gameplay"
                    st.experimental_rerun()

    # Gameplay screen
    elif st.session_state.game_state == "gameplay":
        current_question = st.session_state.questions[st.session_state.current_q]
        
        # Check if AI made a guess
        if "Final Guess:" in current_question:
            st.session_state.final_guess = current_question.split("Final Guess:")[1].strip()
            st.session_state.game_state = "confirm_guess"
            st.experimental_rerun()
        
        st.markdown(f'<div class="question-box">Question {st.session_state.current_q + 1}/20:<br><br>'
                    f'<strong>{current_question}</strong></div>',
                    unsafe_allow_html=True)
        
        with st.form("answer_form"):
            answer_key = f"answer_{st.session_state.current_q}"
            
            # Create columns for input and microphone button
            col1, col2 = st.columns([4, 1])
            with col1:
                answer_input = st.text_input(
                    "Your answer (yes/no/both) - speak or type:",
                    key=answer_key
                ).strip().lower()
            
            with col2:
                st.markdown(
                    f"""
                    <button type="button" onclick="startSpeechRecognition('text_input-{answer_key}')" 
                            class="mic-btn">
                        ๐ŸŽค
                    </button>
                    """,
                    unsafe_allow_html=True
                )
            
            if st.form_submit_button("Submit"):
                if answer_input not in ["yes", "no", "both"]:
                    st.error("Please answer with 'yes', 'no', or 'both'!")
                else:
                    st.session_state.answers.append(answer_input)
                    st.session_state.conversation_history.append(
                        {"role": "user", "content": answer_input}
                    )

                    # Generate next response
                    next_response = ask_llama(
                        st.session_state.conversation_history,
                        st.session_state.category
                    )
                    
                    # Check if AI made a guess
                    if "Final Guess:" in next_response:
                        st.session_state.final_guess = next_response.split("Final Guess:")[1].strip()
                        st.session_state.game_state = "confirm_guess"
                    else:
                        st.session_state.questions.append(next_response)
                        st.session_state.conversation_history.append(
                            {"role": "assistant", "content": next_response}
                        )
                        st.session_state.current_q += 1

                        # Stop after 20 questions max
                        if st.session_state.current_q >= 20:
                            st.session_state.game_state = "result"
                    
                    st.experimental_rerun()

        # Side Help Option: independent chat with an AI help assistant using Hugging Face model
        with st.expander("Need Help? Chat with AI Assistant"):
            help_query = st.text_input("Enter your help query:", key="help_query")
            if st.button("Send", key="send_help"):
                if help_query:
                    help_response = ask_help_agent(help_query)
                    st.session_state.help_conversation.append({"query": help_query, "response": help_response})
                else:
                    st.error("Please enter a query!")
            if st.session_state.help_conversation:
                for msg in st.session_state.help_conversation:
                    st.markdown(f"**You:** {msg['query']}")
                    st.markdown(f"**Help Assistant:** {msg['response']}")

    # Guess confirmation screen using text input response
    elif st.session_state.game_state == "confirm_guess":
        st.markdown(f'<div class="question-box">๐Ÿค– My Final Guess:<br><br>'
                    f'<strong>Is it {st.session_state.final_guess}?</strong></div>',
                    unsafe_allow_html=True)
        
        with st.form("confirm_form"):
            # Create columns for input and microphone button
            col1, col2 = st.columns([4, 1])
            with col1:
                confirm_input = st.text_input(
                    "Type or speak your answer (yes/no/both):",
                    key="confirm_input"
                ).strip().lower()
            
            with col2:
                st.markdown(
                    """
                    <button type="button" onclick="startSpeechRecognition('text_input-confirm_input')" 
                            class="mic-btn">
                        ๐ŸŽค
                    </button>
                    """,
                    unsafe_allow_html=True
                )
            
            if st.form_submit_button("Submit"):
                if confirm_input not in ["yes", "no", "both"]:
                    st.error("Please answer with 'yes', 'no', or 'both'!")
                else:
                    if confirm_input == "yes":
                        st.session_state.game_state = "result"
                        st.experimental_rerun()
                        st.stop()  # Immediately halt further execution
                    else:
                        # Add negative response to history and continue gameplay
                        st.session_state.conversation_history.append(
                            {"role": "user", "content": "no"}
                        )
                        st.session_state.game_state = "gameplay"
                        next_response = ask_llama(
                            st.session_state.conversation_history,
                            st.session_state.category
                        )
                        st.session_state.questions.append(next_response)
                        st.session_state.conversation_history.append(
                            {"role": "assistant", "content": next_response}
                        )
                        st.session_state.current_q += 1
                        st.experimental_rerun()

    # Result screen
    elif st.session_state.game_state == "result":
        if not st.session_state.final_guess:
            # Generate final guess if not already made
            qa_history = "\n".join(
                [f"Q{i+1}: {q}\nA: {a}" 
                 for i, (q, a) in enumerate(zip(st.session_state.questions, st.session_state.answers))]
            )
            
            final_guess = ask_llama(
                [{"role": "user", "content": qa_history}],
                st.session_state.category,
                is_final_guess=True
            )
            st.session_state.final_guess = final_guess.split("Final Guess:")[-1].strip()

        show_confetti()
        st.markdown(f'<div class="final-reveal">๐ŸŽ‰ It\'s...</div>', unsafe_allow_html=True)
        time.sleep(1)
        st.markdown(f'<div class="final-reveal" style="font-size:3.5rem;color:#6C63FF;">{st.session_state.final_guess}</div>',
                    unsafe_allow_html=True)
        st.markdown(f"<p style='text-align:center'>Guessed in {len(st.session_state.questions)} questions</p>", 
                    unsafe_allow_html=True)
        
        if st.button("Play Again", key="play_again"):
            st.session_state.clear()
            st.experimental_rerun()

if __name__ == "__main__":
    main()