File size: 8,714 Bytes
1292ed1
74a6ec1
8622a36
74a6ec1
695c0fc
b922996
8627d53
 
 
 
 
74a6ec1
 
 
bad3bd8
a76773e
 
 
 
 
 
 
 
 
 
 
 
74a6ec1
3159d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a6ec1
1292ed1
8627d53
 
 
 
74a6ec1
8627d53
 
a76773e
8627d53
74a6ec1
8627d53
1292ed1
cd87f3e
 
8622a36
cd87f3e
8622a36
 
3ff9487
1dd8568
65ff7ae
 
 
 
 
 
 
1dd8568
8627d53
 
 
 
 
 
3ff9487
cd87f3e
8627d53
 
cd87f3e
6f37b53
8622a36
cd87f3e
3ff9487
1dd8568
 
8622a36
6f37b53
8622a36
3ff9487
1dd8568
3ff9487
8622a36
1dd8568
3ff9487
8622a36
8627d53
 
 
 
 
 
 
 
 
 
 
a76773e
 
8627d53
 
a76773e
8627d53
 
 
 
 
 
1292ed1
74a6ec1
1dd8568
 
 
4db3cf5
3ff9487
1dd8568
 
 
 
 
 
 
a76773e
6f37b53
3ff9487
12df84a
 
1dd8568
 
 
6f37b53
1dd8568
 
 
6f37b53
3159d0b
12df84a
 
 
3ff9487
3159d0b
 
a76773e
3159d0b
a76773e
 
 
3ff9487
8627d53
1dd8568
8627d53
1dd8568
 
8627d53
a76773e
1dd8568
a76773e
 
1292ed1
 
a76773e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os

@st.cache_resource
def get_help_agent():
    from transformers import pipeline
    return pipeline("conversational", model="facebook/blenderbot-400M-distill")

def inject_custom_css():
    st.markdown("""
    <style>
        @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap');
        * { font-family: 'Poppins', sans-serif; }
        .title { font-size: 3rem !important; font-weight: 700 !important; color: #6C63FF !important; text-align: center; margin-bottom: 0.5rem; }
        .subtitle { font-size: 1.2rem !important; text-align: center; color: #666 !important; margin-bottom: 2rem; }
        .question-box { background: #F8F9FA; border-radius: 15px; padding: 2rem; margin: 1.5rem 0; box-shadow: 0 4px 6px rgba(0,0,0,0.1); color: black !important; }
        .answer-btn { border-radius: 12px !important; padding: 0.5rem 1.5rem !important; font-weight: 600 !important; margin: 0.5rem !important; }
        .yes-btn { background: #6C63FF !important; color: white !important; }
        .no-btn { background: #FF6B6B !important; color: white !important; }
        .final-reveal { animation: fadeIn 2s; font-size: 2.5rem; color: #6C63FF; text-align: center; margin: 2rem 0; }
        @keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } }
        .confetti { position: fixed; top: 0; left: 0; width: 100%; height: 100%; pointer-events: none; z-index: 1000; }
        .confidence-meter { height: 10px; background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%); border-radius: 5px; margin: 10px 0; }
        .mic-btn { margin-top: 29px; border: none; background: none; cursor: pointer; font-size: 1.5em; padding: 0; }
    </style>
    <script>
    function startSpeechRecognition(inputId) {
        const recognition = new (window.SpeechRecognition || window.webkitSpeechRecognition)();
        recognition.lang = 'en-US';
        recognition.interimResults = false;
        recognition.maxAlternatives = 1;
        recognition.onresult = function(event) {
            const transcript = event.results[0][0].transcript.toLowerCase();
            const inputElement = document.getElementById(inputId);
            if (inputElement) {
                inputElement.value = transcript;
                const event = new Event('input', { bubbles: true });
                inputElement.dispatchEvent(event);
            }
        };
        recognition.onerror = function(event) {
            console.error('Speech recognition error', event.error);
        };
        recognition.start();
    }
    </script>
    """, unsafe_allow_html=True)

def show_confetti():
    html("""
    <canvas id="confetti-canvas" class="confetti"></canvas>
    <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
    <script>
    const canvas = document.getElementById('confetti-canvas');
    const confetti = confetti.create(canvas, { resize: true });
    confetti({ particleCount: 150, spread: 70, origin: { y: 0.6 } });
    setTimeout(() => { canvas.remove(); }, 5000);
    </script>
    """)

def ask_llama(conversation_history, category, is_final_guess=False):
    api_url = "https://api.groq.com/openai/v1/chat/completions"
    headers = {
        "Authorization": "Bearer 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",
        "Content-Type": "application/json"
    }

    system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, country, city or population
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""

    if is_final_guess:
        prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
    else:
        prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."

    messages = [
        {"role": "system", "content": system_prompt},
        *conversation_history,
        {"role": "user", "content": prompt}
    ]

    data = {
        "model": "llama-3.3-70b-versatile",
        "messages": messages,
        "temperature": 0.7 if is_final_guess else 0.8,
        "max_tokens": 100
    }

    try:
        response = requests.post(api_url, headers=headers, json=data)
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]
    except Exception as e:
        st.error(f"Error calling Llama API: {str(e)}")
        return "Could not generate question"

def ask_help_agent(query):
    try:
        from huggingface_hub import InferenceClient
        client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=os.environ.get("HF_HUB_TOKEN"))
        system_message = "You are a friendly Chatbot."
        history = []
        if "help_conversation" in st.session_state:
            for msg in st.session_state.help_conversation:
                history.append((msg.get("query", ""), msg.get("response", "")))
        messages = [{"role": "system", "content": system_message}]
        for user_msg, bot_msg in history:
            if user_msg: messages.append({"role": "user", "content": user_msg})
            if bot_msg: messages.append({"role": "assistant", "content": bot_msg})
        messages.append({"role": "user", "content": query})
        response_text = ""
        for message in client.chat_completion(messages, max_tokens=150, stream=True, temperature=0.7, top_p=0.95):
            token = message.choices[0].delta.content
            response_text += token
        return response_text
    except Exception as e:
        return f"Error in help agent: {str(e)}"

def main():
    inject_custom_css()

    st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
    st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True)

    if 'game_state' not in st.session_state:
        st.session_state.game_state = "start"
        st.session_state.questions = []
        st.session_state.current_q = 0
        st.session_state.answers = []
        st.session_state.conversation_history = []
        st.session_state.category = None
        st.session_state.final_guess = None
        st.session_state.help_conversation = []

    if st.session_state.game_state == "start":
        st.markdown("""
        <div class="question-box">
            <h3>Welcome to <span style='color:#6C63FF;'>KASOTI 🎯</span></h3>
            <p>Think of something and I'll try to guess it in 20 questions or less!</p>
            <p>Choose a category:</p>
            <ul>
                <li><strong>Person</strong> - celebrity, fictional character, historical figure</li>
                <li><strong>Place</strong> - city, country, landmark, geographical location</li>
                <li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li>
            </ul>
            <p>Type or speak your category below to begin:</p>
        </div>
        """, unsafe_allow_html=True)

        with st.form("start_form"):
            col1, col2 = st.columns([4, 1])
            with col1:
                category_input = st.text_input("Enter category (person/place/object):", key="category_input").strip().lower()
            with col2:
                st.markdown("""
                <button type="button" onclick="startSpeechRecognition('text_input-category_input')" class="mic-btn">🎤</button>
                """, unsafe_allow_html=True)
            if st.form_submit_button("Start Game"):
                if not category_input:
                    st.error("Please enter a category!")
                elif category_input not in ["person", "place", "object"]:
                    st.error("Please enter either 'person', 'place', or 'object'!")
                else:
                    st.session_state.category = category_input
                    first_question = ask_llama([], category_input)
                    st.session_state.questions = [first_question]
                    st.session_state.conversation_history = [{"role": "assistant", "content": first_question}]
                    st.session_state.game_state = "playing"

if __name__ == "__main__":
    main()