File size: 8,714 Bytes
1292ed1 74a6ec1 8622a36 74a6ec1 695c0fc b922996 8627d53 74a6ec1 bad3bd8 a76773e 74a6ec1 3159d0b 74a6ec1 1292ed1 8627d53 74a6ec1 8627d53 a76773e 8627d53 74a6ec1 8627d53 1292ed1 cd87f3e 8622a36 cd87f3e 8622a36 3ff9487 1dd8568 65ff7ae 1dd8568 8627d53 3ff9487 cd87f3e 8627d53 cd87f3e 6f37b53 8622a36 cd87f3e 3ff9487 1dd8568 8622a36 6f37b53 8622a36 3ff9487 1dd8568 3ff9487 8622a36 1dd8568 3ff9487 8622a36 8627d53 a76773e 8627d53 a76773e 8627d53 1292ed1 74a6ec1 1dd8568 4db3cf5 3ff9487 1dd8568 a76773e 6f37b53 3ff9487 12df84a 1dd8568 6f37b53 1dd8568 6f37b53 3159d0b 12df84a 3ff9487 3159d0b a76773e 3159d0b a76773e 3ff9487 8627d53 1dd8568 8627d53 1dd8568 8627d53 a76773e 1dd8568 a76773e 1292ed1 a76773e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os
@st.cache_resource
def get_help_agent():
from transformers import pipeline
return pipeline("conversational", model="facebook/blenderbot-400M-distill")
def inject_custom_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap');
* { font-family: 'Poppins', sans-serif; }
.title { font-size: 3rem !important; font-weight: 700 !important; color: #6C63FF !important; text-align: center; margin-bottom: 0.5rem; }
.subtitle { font-size: 1.2rem !important; text-align: center; color: #666 !important; margin-bottom: 2rem; }
.question-box { background: #F8F9FA; border-radius: 15px; padding: 2rem; margin: 1.5rem 0; box-shadow: 0 4px 6px rgba(0,0,0,0.1); color: black !important; }
.answer-btn { border-radius: 12px !important; padding: 0.5rem 1.5rem !important; font-weight: 600 !important; margin: 0.5rem !important; }
.yes-btn { background: #6C63FF !important; color: white !important; }
.no-btn { background: #FF6B6B !important; color: white !important; }
.final-reveal { animation: fadeIn 2s; font-size: 2.5rem; color: #6C63FF; text-align: center; margin: 2rem 0; }
@keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } }
.confetti { position: fixed; top: 0; left: 0; width: 100%; height: 100%; pointer-events: none; z-index: 1000; }
.confidence-meter { height: 10px; background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%); border-radius: 5px; margin: 10px 0; }
.mic-btn { margin-top: 29px; border: none; background: none; cursor: pointer; font-size: 1.5em; padding: 0; }
</style>
<script>
function startSpeechRecognition(inputId) {
const recognition = new (window.SpeechRecognition || window.webkitSpeechRecognition)();
recognition.lang = 'en-US';
recognition.interimResults = false;
recognition.maxAlternatives = 1;
recognition.onresult = function(event) {
const transcript = event.results[0][0].transcript.toLowerCase();
const inputElement = document.getElementById(inputId);
if (inputElement) {
inputElement.value = transcript;
const event = new Event('input', { bubbles: true });
inputElement.dispatchEvent(event);
}
};
recognition.onerror = function(event) {
console.error('Speech recognition error', event.error);
};
recognition.start();
}
</script>
""", unsafe_allow_html=True)
def show_confetti():
html("""
<canvas id="confetti-canvas" class="confetti"></canvas>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
<script>
const canvas = document.getElementById('confetti-canvas');
const confetti = confetti.create(canvas, { resize: true });
confetti({ particleCount: 150, spread: 70, origin: { y: 0.6 } });
setTimeout(() => { canvas.remove(); }, 5000);
</script>
""")
def ask_llama(conversation_history, category, is_final_guess=False):
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": "Bearer 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",
"Content-Type": "application/json"
}
system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, country, city or population
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""
if is_final_guess:
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
else:
prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."
messages = [
{"role": "system", "content": system_prompt},
*conversation_history,
{"role": "user", "content": prompt}
]
data = {
"model": "llama-3.3-70b-versatile",
"messages": messages,
"temperature": 0.7 if is_final_guess else 0.8,
"max_tokens": 100
}
try:
response = requests.post(api_url, headers=headers, json=data)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except Exception as e:
st.error(f"Error calling Llama API: {str(e)}")
return "Could not generate question"
def ask_help_agent(query):
try:
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=os.environ.get("HF_HUB_TOKEN"))
system_message = "You are a friendly Chatbot."
history = []
if "help_conversation" in st.session_state:
for msg in st.session_state.help_conversation:
history.append((msg.get("query", ""), msg.get("response", "")))
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg: messages.append({"role": "user", "content": user_msg})
if bot_msg: messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": query})
response_text = ""
for message in client.chat_completion(messages, max_tokens=150, stream=True, temperature=0.7, top_p=0.95):
token = message.choices[0].delta.content
response_text += token
return response_text
except Exception as e:
return f"Error in help agent: {str(e)}"
def main():
inject_custom_css()
st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True)
if 'game_state' not in st.session_state:
st.session_state.game_state = "start"
st.session_state.questions = []
st.session_state.current_q = 0
st.session_state.answers = []
st.session_state.conversation_history = []
st.session_state.category = None
st.session_state.final_guess = None
st.session_state.help_conversation = []
if st.session_state.game_state == "start":
st.markdown("""
<div class="question-box">
<h3>Welcome to <span style='color:#6C63FF;'>KASOTI 🎯</span></h3>
<p>Think of something and I'll try to guess it in 20 questions or less!</p>
<p>Choose a category:</p>
<ul>
<li><strong>Person</strong> - celebrity, fictional character, historical figure</li>
<li><strong>Place</strong> - city, country, landmark, geographical location</li>
<li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li>
</ul>
<p>Type or speak your category below to begin:</p>
</div>
""", unsafe_allow_html=True)
with st.form("start_form"):
col1, col2 = st.columns([4, 1])
with col1:
category_input = st.text_input("Enter category (person/place/object):", key="category_input").strip().lower()
with col2:
st.markdown("""
<button type="button" onclick="startSpeechRecognition('text_input-category_input')" class="mic-btn">🎤</button>
""", unsafe_allow_html=True)
if st.form_submit_button("Start Game"):
if not category_input:
st.error("Please enter a category!")
elif category_input not in ["person", "place", "object"]:
st.error("Please enter either 'person', 'place', or 'object'!")
else:
st.session_state.category = category_input
first_question = ask_llama([], category_input)
st.session_state.questions = [first_question]
st.session_state.conversation_history = [{"role": "assistant", "content": first_question}]
st.session_state.game_state = "playing"
if __name__ == "__main__":
main()
|