File size: 12,176 Bytes
1292ed1 74a6ec1 8622a36 74a6ec1 b922996 d55d4bd 61d1238 3ff9487 74a6ec1 bad3bd8 3ff9487 bad3bd8 3ff9487 bad3bd8 3ff9487 bad3bd8 3ff9487 bad3bd8 3ff9487 bad3bd8 3ff9487 bad3bd8 3ff9487 bad3bd8 cd87f3e 74a6ec1 1292ed1 cd87f3e 74a6ec1 bad3bd8 74a6ec1 bad3bd8 cd87f3e 74a6ec1 1292ed1 d55d4bd cd87f3e 8622a36 cd87f3e 8622a36 3ff9487 cd87f3e 3ff9487 cd87f3e 6f37b53 8622a36 cd87f3e 3ff9487 cd87f3e 8622a36 6f37b53 8622a36 3ff9487 8622a36 3ff9487 8622a36 d55d4bd 61d1238 d55d4bd 61d1238 cd87f3e 1292ed1 74a6ec1 3ff9487 74a6ec1 cd87f3e 4db3cf5 3ff9487 cd87f3e 61d1238 6f37b53 3ff9487 12df84a cd87f3e 6f37b53 cd87f3e 6f37b53 cd87f3e 12df84a 3ff9487 cd87f3e 3ff9487 cd87f3e 3ff9487 6f37b53 3ff9487 cd87f3e 3ff9487 cd87f3e 3ff9487 61d1238 cd87f3e 3ff9487 61d1238 25f0c4f 3ff9487 98a3918 cd87f3e 3ff9487 cd87f3e 3ff9487 cd87f3e 3ff9487 6f37b53 cd87f3e 3ff9487 6f37b53 d55d4bd 61d1238 3ff9487 cd87f3e 3ff9487 cd87f3e 3ff9487 cd87f3e 3ff9487 cd87f3e 3ff9487 1292ed1 61d1238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
# Import transformers and cache the help agent for performance
@st.cache_resource
def get_help_agent():
from transformers import pipeline
# Using BlenderBot 400M Distill as the public conversational model
return pipeline("conversational", model="facebook/blenderbot-400M-distill")
# Custom CSS for professional look
def inject_custom_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap');
* {
font-family: 'Poppins', sans-serif;
}
.title {
font-size: 3rem !important;
font-weight: 700 !important;
color: #6C63FF !important;
text-align: center;
margin-bottom: 0.5rem;
}
.subtitle {
font-size: 1.2rem !important;
text-align: center;
color: #666 !important;
margin-bottom: 2rem;
}
.question-box {
background: #F8F9FA;
border-radius: 15px;
padding: 2rem;
margin: 1.5rem 0;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
color: black;
}
.answer-btn {
border-radius: 12px !important;
padding: 0.5rem 1.5rem !important;
font-weight: 600 !important;
margin: 0.5rem !important;
}
.yes-btn {
background: #6C63FF !important;
color: white !important;
}
.no-btn {
background: #FF6B6B !important;
color: white !important;
}
.final-reveal {
animation: fadeIn 2s;
font-size: 2.5rem;
color: #6C63FF;
text-align: center;
margin: 2rem 0;
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.confetti {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
pointer-events: none;
z-index: 1000;
}
.confidence-meter {
height: 10px;
background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%);
border-radius: 5px;
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Confetti animation
def show_confetti():
html("""
<canvas id="confetti-canvas" class="confetti"></canvas>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
<script>
const canvas = document.getElementById('confetti-canvas');
const confetti = confetti.create(canvas, { resize: true });
confetti({
particleCount: 150,
spread: 70,
origin: { y: 0.6 }
});
setTimeout(() => { canvas.remove(); }, 5000);
</script>
""")
# Enhanced AI question generation for guessing game using Llama model
def ask_llama(conversation_history, category, is_final_guess=False):
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": "Bearer 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",
"Content-Type": "application/json"
}
system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, or population
5. For people: ask about profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""
if is_final_guess:
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
else:
prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."
messages = [
{"role": "system", "content": system_prompt},
*conversation_history,
{"role": "user", "content": prompt}
]
data = {
"model": "llama-3.3-70b-versatile",
"messages": messages,
"temperature": 0.7 if is_final_guess else 0.8,
"max_tokens": 100
}
try:
response = requests.post(api_url, headers=headers, json=data)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except Exception as e:
st.error(f"Error calling Llama API: {str(e)}")
return "Could not generate question"
# New function for the help AI assistant using a Hugging Face chatbot model
def ask_help_agent(query):
from transformers import Conversation
# Get the cached help agent (BlenderBot)
help_agent = get_help_agent()
conversation = Conversation(query)
result = help_agent(conversation)
# The generated response is stored in generated_responses list
return result.generated_responses[-1]
# Main game logic
def main():
inject_custom_css()
st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True)
if 'game_state' not in st.session_state:
st.session_state.game_state = "start"
st.session_state.questions = []
st.session_state.current_q = 0
st.session_state.answers = []
st.session_state.conversation_history = []
st.session_state.category = None
st.session_state.final_guess = None
st.session_state.help_conversation = [] # separate history for help agent
# Start screen
if st.session_state.game_state == "start":
st.markdown("""
<div class="question-box">
<h3>Welcome to <span style='color:#6C63FF;'>KASOTI 🎯</span></h3>
<p>Think of something and I'll try to guess it in 20 questions or less!</p>
<p>Choose a category:</p>
<ul>
<li><strong>Person</strong> - celebrity, fictional character, historical figure</li>
<li><strong>Place</strong> - city, country, landmark, geographical location</li>
<li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li>
</ul>
<p>Type your category below to begin:</p>
</div>
""", unsafe_allow_html=True)
with st.form("start_form"):
category_input = st.text_input("Enter category (person/place/object):").strip().lower()
if st.form_submit_button("Start Game"):
if not category_input:
st.error("Please enter a category!")
elif category_input not in ["person", "place", "object"]:
st.error("Please enter either 'person', 'place', or 'object'!")
else:
st.session_state.category = category_input
first_question = ask_llama([
{"role": "user", "content": "Ask your first strategic yes/no question."}
], category_input)
st.session_state.questions = [first_question]
st.session_state.conversation_history = [
{"role": "assistant", "content": first_question}
]
st.session_state.game_state = "gameplay"
st.rerun()
# Gameplay screen
elif st.session_state.game_state == "gameplay":
current_question = st.session_state.questions[st.session_state.current_q]
# Check if AI made a guess
if "Final Guess:" in current_question:
st.session_state.final_guess = current_question.split("Final Guess:")[1].strip()
st.session_state.game_state = "result"
st.rerun()
st.markdown(f'<div class="question-box">Question {st.session_state.current_q + 1}/20:<br><br>'
f'<strong>{current_question}</strong></div>',
unsafe_allow_html=True)
with st.form("answer_form"):
answer_input = st.text_input("Your answer (yes/no/both):",
key=f"answer_{st.session_state.current_q}").strip().lower()
if st.form_submit_button("Submit"):
if answer_input not in ["yes", "no", "both"]:
st.error("Please answer with 'yes', 'no', or 'both'!")
else:
st.session_state.answers.append(answer_input)
st.session_state.conversation_history.append(
{"role": "user", "content": answer_input}
)
# Generate next response
next_response = ask_llama(
st.session_state.conversation_history,
st.session_state.category
)
# Check if AI made a guess
if "Final Guess:" in next_response:
st.session_state.final_guess = next_response.split("Final Guess:")[1].strip()
st.session_state.game_state = "result"
else:
st.session_state.questions.append(next_response)
st.session_state.conversation_history.append(
{"role": "assistant", "content": next_response}
)
st.session_state.current_q += 1
# Stop after 8 questions if no guess yet
if st.session_state.current_q >= 8:
st.session_state.game_state = "result"
st.rerun()
# Side Help Option: independent chat with an AI help assistant (Hugging Face model)
with st.expander("Need Help? Chat with AI Assistant"):
help_query = st.text_input("Enter your help query:", key="help_query")
if st.button("Send", key="send_help"):
if help_query:
help_response = ask_help_agent(help_query)
st.session_state.help_conversation.append({"query": help_query, "response": help_response})
else:
st.error("Please enter a query!")
if st.session_state.help_conversation:
for msg in st.session_state.help_conversation:
st.markdown(f"**You:** {msg['query']}")
st.markdown(f"**Help Assistant:** {msg['response']}")
# Result screen
elif st.session_state.game_state == "result":
if st.session_state.final_guess is None:
# Generate final guess if not already made
qa_history = "\n".join(
[f"Q{i+1}: {q}\nA: {a}"
for i, (q, a) in enumerate(zip(st.session_state.questions, st.session_state.answers))]
)
st.session_state.final_guess = ask_llama(
[{"role": "user", "content": qa_history}],
st.session_state.category,
is_final_guess=True
)
show_confetti()
st.markdown('<div class="final-reveal">🎉 My guess is...</div>', unsafe_allow_html=True)
time.sleep(1)
st.markdown(f'<div class="final-reveal" style="font-size:3.5rem;color:#6C63FF;">{st.session_state.final_guess}</div>',
unsafe_allow_html=True)
st.markdown(f"<p style='text-align:center'>Guessed in {len(st.session_state.questions)} questions</p>",
unsafe_allow_html=True)
if st.button("Play Again", key="play_again"):
st.session_state.clear()
st.rerun()
if __name__ == "__main__":
main()
|