File size: 14,310 Bytes
1292ed1
74a6ec1
8622a36
74a6ec1
b922996
1dd8568
d55d4bd
 
 
1dd8568
d55d4bd
61d1238
1dd8568
74a6ec1
 
 
bad3bd8
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a6ec1
 
1292ed1
cd87f3e
74a6ec1
 
bad3bd8
 
74a6ec1
bad3bd8
 
1dd8568
 
 
 
 
cd87f3e
74a6ec1
 
1292ed1
1dd8568
cd87f3e
 
8622a36
cd87f3e
8622a36
 
3ff9487
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
 
cd87f3e
3ff9487
cd87f3e
 
1dd8568
cd87f3e
6f37b53
8622a36
cd87f3e
3ff9487
1dd8568
 
8622a36
6f37b53
8622a36
3ff9487
1dd8568
3ff9487
8622a36
1dd8568
3ff9487
8622a36
1dd8568
61d1238
dbcd0b9
 
 
 
 
 
1dd8568
 
 
 
 
 
61d1238
1dd8568
1292ed1
74a6ec1
1dd8568
 
 
4db3cf5
3ff9487
1dd8568
 
 
 
 
 
 
 
6f37b53
 
3ff9487
12df84a
 
1dd8568
 
 
6f37b53
1dd8568
 
 
6f37b53
1dd8568
12df84a
 
 
3ff9487
1dd8568
3ff9487
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f37b53
3ff9487
 
1dd8568
cd87f3e
1dd8568
cd87f3e
 
12fc990
cd87f3e
1dd8568
 
 
 
 
12fc990
1dd8568
 
12fc990
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d1238
 
1dd8568
 
 
 
 
 
 
12fc990
1dd8568
12fc990
1dd8568
 
 
12fc990
1dd8568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d1238
3ff9487
 
12fc990
1dd8568
a083a98
 
 
 
 
12fc990
a083a98
cd87f3e
 
 
12fc990
3ff9487
 
12fc990
3ff9487
1dd8568
 
 
 
cd87f3e
3ff9487
1292ed1
 
 
 
1dd8568
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import streamlit as st
import time
import requests
from streamlit.components.v1 import html

# Import transformers and cache the help agent for performance
@st.cache_resource
def get_help_agent():
    from transformers import pipeline
    # Using BlenderBot 400M Distill as the public conversational model
    return pipeline("conversational", model="facebook/blenderbot-400M-distill")

# Custom CSS for professional look (fixed text color)
def inject_custom_css():
    st.markdown("""
    <style>
        @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap');

        * {
            font-family: 'Poppins', sans-serif;
        }

        .title {
            font-size: 3rem !important;
            font-weight: 700 !important;
            color: #6C63FF !important;
            text-align: center;
            margin-bottom: 0.5rem;
        }

        .subtitle {
            font-size: 1.2rem !important;
            text-align: center;
            color: #666 !important;
            margin-bottom: 2rem;
        }

        .question-box {
            background: #F8F9FA;
            border-radius: 15px;
            padding: 2rem;
            margin: 1.5rem 0;
            box-shadow: 0 4px 6px rgba(0,0,0,0.1);
            color: black !important;
        }

        .answer-btn {
            border-radius: 12px !important;
            padding: 0.5rem 1.5rem !important;
            font-weight: 600 !important;
            margin: 0.5rem !important;
        }

        .yes-btn {
            background: #6C63FF !important;
            color: white !important;
        }

        .no-btn {
            background: #FF6B6B !important;
            color: white !important;
        }

        .final-reveal {
            animation: fadeIn 2s;
            font-size: 2.5rem;
            color: #6C63FF;
            text-align: center;
            margin: 2rem 0;
        }

        @keyframes fadeIn {
            from { opacity: 0; }
            to { opacity: 1; }
        }

        .confetti {
            position: fixed;
            top: 0;
            left: 0;
            width: 100%;
            height: 100%;
            pointer-events: none;
            z-index: 1000;
        }
        
        .confidence-meter {
            height: 10px;
            background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%);
            border-radius: 5px;
            margin: 10px 0;
        }
    </style>
    """, unsafe_allow_html=True)

# Confetti animation
def show_confetti():
    html("""
    <canvas id="confetti-canvas" class="confetti"></canvas>
    <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
    <script>
    const canvas = document.getElementById('confetti-canvas');
    const confetti = confetti.create(canvas, { resize: true });
    confetti({
        particleCount: 150,
        spread: 70,
        origin: { y: 0.6 }
    });
    setTimeout(() => { canvas.remove(); }, 5000);
    </script>
    """)

# Enhanced AI question generation for guessing game using Llama model
def ask_llama(conversation_history, category, is_final_guess=False):
    api_url = "https://api.groq.com/openai/v1/chat/completions"
    headers = {
        "Authorization": "Bearer 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",
        "Content-Type": "application/json"
    }

    system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, country, city or population
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""

    if is_final_guess:
        prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
    else:
        prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."

    messages = [
        {"role": "system", "content": system_prompt},
        *conversation_history,
        {"role": "user", "content": prompt}
    ]

    data = {
        "model": "llama-3.3-70b-versatile",
        "messages": messages,
        "temperature": 0.7 if is_final_guess else 0.8,
        "max_tokens": 100
    }

    try:
        response = requests.post(api_url, headers=headers, json=data)
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]
    except Exception as e:
        st.error(f"Error calling Llama API: {str(e)}")
        return "Could not generate question"

# New function for the help AI assistant using a Hugging Face chatbot model
def ask_help_agent(query):
    # Use a try/except block to import Conversation from the correct module,
    # accommodating different versions of transformers
    try:
        from transformers import Conversation
    except ImportError:
        from transformers.pipelines.conversational import Conversation
    # Get the cached help agent (BlenderBot)
    help_agent = get_help_agent()
    conversation = Conversation(query)
    result = help_agent(conversation)
    # The generated response is stored in generated_responses list
    return result.generated_responses[-1]

# Main game logic
def main():
    inject_custom_css()

    st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
    st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True)

    if 'game_state' not in st.session_state:
        st.session_state.game_state = "start"
        st.session_state.questions = []
        st.session_state.current_q = 0
        st.session_state.answers = []
        st.session_state.conversation_history = []
        st.session_state.category = None
        st.session_state.final_guess = None
        st.session_state.help_conversation = []  # separate history for help agent

    # Start screen
    if st.session_state.game_state == "start":
        st.markdown("""
        <div class="question-box">
            <h3>Welcome to <span style='color:#6C63FF;'>KASOTI 🎯</span></h3>
            <p>Think of something and I'll try to guess it in 20 questions or less!</p>
            <p>Choose a category:</p>
            <ul>
                <li><strong>Person</strong> - celebrity, fictional character, historical figure</li>
                <li><strong>Place</strong> - city, country, landmark, geographical location</li>
                <li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li>
            </ul>
            <p>Type your category below to begin:</p>
        </div>
        """, unsafe_allow_html=True)

        with st.form("start_form"):
            category_input = st.text_input("Enter category (person/place/object):").strip().lower()
            if st.form_submit_button("Start Game"):
                if not category_input:
                    st.error("Please enter a category!")
                elif category_input not in ["person", "place", "object"]:
                    st.error("Please enter either 'person', 'place', or 'object'!")
                else:
                    st.session_state.category = category_input
                    first_question = ask_llama([
                        {"role": "user", "content": "Ask your first strategic yes/no question."}
                    ], category_input)
                    st.session_state.questions = [first_question]
                    st.session_state.conversation_history = [
                        {"role": "assistant", "content": first_question}
                    ]
                    st.session_state.game_state = "gameplay"
                    st.rerun()

    # Gameplay screen
    elif st.session_state.game_state == "gameplay":
        current_question = st.session_state.questions[st.session_state.current_q]
        
        # Check if AI made a guess
        if "Final Guess:" in current_question:
            st.session_state.final_guess = current_question.split("Final Guess:")[1].strip()
            st.session_state.game_state = "confirm_guess"
            st.rerun()
        
        st.markdown(f'<div class="question-box">Question {st.session_state.current_q + 1}/20:<br><br>'
                    f'<strong>{current_question}</strong></div>',
                    unsafe_allow_html=True)
        
        with st.form("answer_form"):
            answer_input = st.text_input("Your answer (yes/no/both):", 
                                       key=f"answer_{st.session_state.current_q}").strip().lower()
            if st.form_submit_button("Submit"):
                if answer_input not in ["yes", "no", "both"]:
                    st.error("Please answer with 'yes', 'no', or 'both'!")
                else:
                    st.session_state.answers.append(answer_input)
                    st.session_state.conversation_history.append(
                        {"role": "user", "content": answer_input}
                    )

                    # Generate next response
                    next_response = ask_llama(
                        st.session_state.conversation_history,
                        st.session_state.category
                    )
                    
                    # Check if AI made a guess
                    if "Final Guess:" in next_response:
                        st.session_state.final_guess = next_response.split("Final Guess:")[1].strip()
                        st.session_state.game_state = "confirm_guess"
                    else:
                        st.session_state.questions.append(next_response)
                        st.session_state.conversation_history.append(
                            {"role": "assistant", "content": next_response}
                        )
                        st.session_state.current_q += 1

                        # Stop after 20 questions max
                        if st.session_state.current_q >= 20:
                            st.session_state.game_state = "result"
                    
                    st.rerun()

        # Side Help Option: independent chat with an AI help assistant (Hugging Face model)
        with st.expander("Need Help? Chat with AI Assistant"):
            help_query = st.text_input("Enter your help query:", key="help_query")
            if st.button("Send", key="send_help"):
                if help_query:
                    help_response = ask_help_agent(help_query)
                    st.session_state.help_conversation.append({"query": help_query, "response": help_response})
                else:
                    st.error("Please enter a query!")
            if st.session_state.help_conversation:
                for msg in st.session_state.help_conversation:
                    st.markdown(f"**You:** {msg['query']}")
                    st.markdown(f"**Help Assistant:** {msg['response']}")

    # Guess confirmation screen using text input response
    elif st.session_state.game_state == "confirm_guess":
        st.markdown(f'<div class="question-box">🤖 My Final Guess:<br><br>'
                    f'<strong>Is it {st.session_state.final_guess}?</strong></div>',
                    unsafe_allow_html=True)
        
        with st.form("confirm_form"):
            confirm_input = st.text_input("Type your answer (yes/no/both):", key="confirm_input").strip().lower()
            if st.form_submit_button("Submit"):
                if confirm_input not in ["yes", "no", "both"]:
                    st.error("Please answer with 'yes', 'no', or 'both'!")
                else:
                    if confirm_input == "yes":
                        st.session_state.game_state = "result"
                        st.rerun()
                        st.stop()  # Immediately halt further execution
                    else:
                        # Add negative response to history and continue gameplay
                        st.session_state.conversation_history.append(
                            {"role": "user", "content": "no"}
                        )
                        st.session_state.game_state = "gameplay"
                        next_response = ask_llama(
                            st.session_state.conversation_history,
                            st.session_state.category
                        )
                        st.session_state.questions.append(next_response)
                        st.session_state.conversation_history.append(
                            {"role": "assistant", "content": next_response}
                        )
                        st.session_state.current_q += 1
                        st.rerun()

    # Result screen
    elif st.session_state.game_state == "result":
        if not st.session_state.final_guess:
            # Generate final guess if not already made
            qa_history = "\n".join(
                [f"Q{i+1}: {q}\nA: {a}" 
                 for i, (q, a) in enumerate(zip(st.session_state.questions, st.session_state.answers))]
            )
            
            final_guess = ask_llama(
                [{"role": "user", "content": qa_history}],
                st.session_state.category,
                is_final_guess=True
            )
            st.session_state.final_guess = final_guess.split("Final Guess:")[-1].strip()

        show_confetti()
        st.markdown(f'<div class="final-reveal">🎉 It\'s...</div>', unsafe_allow_html=True)
        time.sleep(1)
        st.markdown(f'<div class="final-reveal" style="font-size:3.5rem;color:#6C63FF;">{st.session_state.final_guess}</div>',
                    unsafe_allow_html=True)
        st.markdown(f"<p style='text-align:center'>Guessed in {len(st.session_state.questions)} questions</p>", 
                    unsafe_allow_html=True)
        
        if st.button("Play Again", key="play_again"):
            st.session_state.clear()
            st.rerun()

if __name__ == "__main__":
    main()