KASOTI / app.py
iisadia's picture
Update app.py
cf15d73 verified
raw
history blame
19.3 kB
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os
import base64
import io
from pydub import AudioSegment
import speech_recognition as sr
# Import transformers and cache the help agent for performance
@st.cache_resource
def get_help_agent():
from transformers import pipeline
# Using BlenderBot 400M Distill as the public conversational model (used elsewhere)
return pipeline("conversational", model="facebook/blenderbot-400M-distill")
# Custom CSS for professional look (fixed text color)
def inject_custom_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600;700&display=swap');
* {
font-family: 'Poppins', sans-serif;
}
.title {
font-size: 3rem !important;
font-weight: 700 !important;
color: #6C63FF !important;
text-align: center;
margin-bottom: 0.5rem;
}
.subtitle {
font-size: 1.2rem !important;
text-align: center;
color: #666 !important;
margin-bottom: 2rem;
}
.question-box {
background: #F8F9FA;
border-radius: 15px;
padding: 2rem;
margin: 1.5rem 0;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
color: black !important;
}
.answer-btn {
border-radius: 12px !important;
padding: 0.5rem 1.5rem !important;
font-weight: 600 !important;
margin: 0.5rem !important;
}
.yes-btn {
background: #6C63FF !important;
color: white !important;
}
.no-btn {
background: #FF6B6B !important;
color: white !important;
}
.final-reveal {
animation: fadeIn 2s;
font-size: 2.5rem;
color: #6C63FF;
text-align: center;
margin: 2rem 0;
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.confetti {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
pointer-events: none;
z-index: 1000;
}
.confidence-meter {
height: 10px;
background: linear-gradient(90deg, #FF6B6B 0%, #6C63FF 100%);
border-radius: 5px;
margin: 10px 0;
}
.mic-btn {
background: #6C63FF !important;
color: white !important;
border-radius: 50% !important;
width: 40px !important;
height: 40px !important;
padding: 0 !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
}
</style>
""", unsafe_allow_html=True)
# Confetti animation
def show_confetti():
html("""
<canvas id="confetti-canvas" class="confetti"></canvas>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
<script>
const canvas = document.getElementById('confetti-canvas');
const confetti = confetti.create(canvas, { resize: true });
confetti({
particleCount: 150,
spread: 70,
origin: { y: 0.6 }
});
setTimeout(() => { canvas.remove(); }, 5000);
</script>
""")
# Enhanced AI question generation for guessing game using Llama model
def ask_llama(conversation_history, category, is_final_guess=False):
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": "Bearer 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",
"Content-Type": "application/json"
}
system_prompt = f"""You're playing 20 questions to guess a {category}. Follow these rules:
1. Ask strategic, non-repeating yes/no questions that narrow down possibilities
2. Consider all previous answers carefully before asking next question
3. If you're very confident (80%+ sure), respond with "Final Guess: [your guess]"
4. For places: ask about continent, climate, famous landmarks, country, city or population
5. For people: ask about fictional or real, profession, gender, alive/dead, nationality, or fame
6. For objects: ask about size, color, usage, material, or where it's found
7. Never repeat questions and always make progress toward guessing"""
if is_final_guess:
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}"""
else:
prompt = "Ask your next strategic yes/no question that will best narrow down the possibilities."
messages = [
{"role": "system", "content": system_prompt},
*conversation_history,
{"role": "user", "content": prompt}
]
data = {
"model": "llama-3.3-70b-versatile",
"messages": messages,
"temperature": 0.7 if is_final_guess else 0.8,
"max_tokens": 100
}
try:
response = requests.post(api_url, headers=headers, json=data)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except Exception as e:
st.error(f"Error calling Llama API: {str(e)}")
return "Could not generate question"
# New function for the help AI assistant using the Hugging Face InferenceClient
def ask_help_agent(query):
try:
from huggingface_hub import InferenceClient
# Initialize the client with the provided model
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=os.environ.get("HF_HUB_TOKEN"))
system_message = "You are a friendly Chatbot."
# Build history from session state (if any)
history = []
if "help_conversation" in st.session_state:
for msg in st.session_state.help_conversation:
# Each history entry is a tuple: (user query, assistant response)
history.append((msg.get("query", ""), msg.get("response", "")))
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": query})
response_text = ""
# Using streaming to collect the entire response from the model
for message in client.chat_completion(
messages,
max_tokens=150,
stream=True,
temperature=0.7,
top_p=0.95,
):
token = message.choices[0].delta.content
response_text += token
return response_text
except Exception as e:
return f"Error in help agent: {str(e)}"
# Audio processing functions
def transcribe_audio(audio_bytes):
"""Convert audio bytes to text using SpeechRecognition"""
recognizer = sr.Recognizer()
try:
# Convert bytes to audio file
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
# Export as WAV
wav_io = io.BytesIO()
audio.export(wav_io, format="wav")
wav_io.seek(0)
with sr.AudioFile(wav_io) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
return text.lower()
except sr.UnknownValueError:
st.error("Could not understand audio")
except sr.RequestError as e:
st.error(f"Speech recognition error: {e}")
except Exception as e:
st.error(f"Error processing audio: {e}")
return ""
def microphone_input(key):
"""Create microphone widget and return transcribed text"""
audio_bytes = st.audio_recorder("Speak your answer", key=key)
if audio_bytes:
with st.spinner("Processing audio..."):
text = transcribe_audio(audio_bytes)
if text:
return text
return None
# Main game logic
def main():
inject_custom_css()
st.markdown('<div class="title">KASOTI</div>', unsafe_allow_html=True)
st.markdown('<div class="subtitle">The Smart Guessing Game</div>', unsafe_allow_html=True)
if 'game_state' not in st.session_state:
st.session_state.game_state = "start"
st.session_state.questions = []
st.session_state.current_q = 0
st.session_state.answers = []
st.session_state.conversation_history = []
st.session_state.category = None
st.session_state.final_guess = None
st.session_state.help_conversation = [] # separate history for help agent
# Start screen
if st.session_state.game_state == "start":
st.markdown("""
<div class="question-box">
<h3>Welcome to <span style='color:#6C63FF;'>KASOTI ๏ฟฝ</span></h3>
<p>Think of something and I'll try to guess it in 20 questions or less!</p>
<p>Choose a category:</p>
<ul>
<li><strong>Person</strong> - celebrity, fictional character, historical figure</li>
<li><strong>Place</strong> - city, country, landmark, geographical location</li>
<li><strong>Object</strong> - everyday item, tool, vehicle, etc.</li>
</ul>
<p>Type your category below to begin:</p>
</div>
""", unsafe_allow_html=True)
with st.form("start_form"):
col1, col2 = st.columns([4, 1])
with col1:
category_input = st.text_input("Enter category (person/place/object):", key="category_input").strip().lower()
with col2:
st.write("")
st.write("")
if st.form_submit_button("๐ŸŽค", key="start_mic"):
audio_text = microphone_input("start_mic")
if audio_text:
st.session_state.category_input = audio_text
st.experimental_rerun()
if st.form_submit_button("Start Game"):
category_input = st.session_state.get("category_input", category_input)
if not category_input:
st.error("Please enter a category!")
elif category_input not in ["person", "place", "object"]:
st.error("Please enter either 'person', 'place', or 'object'!")
else:
st.session_state.category = category_input
first_question = ask_llama([
{"role": "user", "content": "Ask your first strategic yes/no question."}
], category_input)
st.session_state.questions = [first_question]
st.session_state.conversation_history = [
{"role": "assistant", "content": first_question}
]
st.session_state.game_state = "gameplay"
st.experimental_rerun()
# Gameplay screen
elif st.session_state.game_state == "gameplay":
current_question = st.session_state.questions[st.session_state.current_q]
# Check if AI made a guess
if "Final Guess:" in current_question:
st.session_state.final_guess = current_question.split("Final Guess:")[1].strip()
st.session_state.game_state = "confirm_guess"
st.experimental_rerun()
st.markdown(f'<div class="question-box">Question {st.session_state.current_q + 1}/20:<br><br>'
f'<strong>{current_question}</strong></div>',
unsafe_allow_html=True)
with st.form("answer_form"):
col1, col2 = st.columns([4, 1])
with col1:
answer_input = st.text_input("Your answer (yes/no/both):",
key=f"answer_{st.session_state.current_q}").strip().lower()
with col2:
st.write("")
st.write("")
if st.form_submit_button("๐ŸŽค", key=f"mic_{st.session_state.current_q}"):
audio_text = microphone_input(f"mic_{st.session_state.current_q}")
if audio_text:
st.session_state[f"answer_{st.session_state.current_q}"] = audio_text
st.experimental_rerun()
if st.form_submit_button("Submit"):
answer_input = st.session_state.get(f"answer_{st.session_state.current_q}", answer_input)
if answer_input not in ["yes", "no", "both"]:
st.error("Please answer with 'yes', 'no', or 'both'!")
else:
st.session_state.answers.append(answer_input)
st.session_state.conversation_history.append(
{"role": "user", "content": answer_input}
)
# Generate next response
next_response = ask_llama(
st.session_state.conversation_history,
st.session_state.category
)
# Check if AI made a guess
if "Final Guess:" in next_response:
st.session_state.final_guess = next_response.split("Final Guess:")[1].strip()
st.session_state.game_state = "confirm_guess"
else:
st.session_state.questions.append(next_response)
st.session_state.conversation_history.append(
{"role": "assistant", "content": next_response}
)
st.session_state.current_q += 1
# Stop after 20 questions max
if st.session_state.current_q >= 20:
st.session_state.game_state = "result"
st.experimental_rerun()
# Side Help Option: independent chat with an AI help assistant using Hugging Face model
with st.expander("Need Help? Chat with AI Assistant"):
col1, col2 = st.columns([4, 1])
with col1:
help_query = st.text_input("Enter your help query:", key="help_query")
with col2:
st.write("")
st.write("")
if st.button("๐ŸŽค", key="help_mic"):
audio_text = microphone_input("help_mic")
if audio_text:
st.session_state.help_query = audio_text
st.experimental_rerun()
if st.button("Send", key="send_help"):
help_query = st.session_state.get("help_query", help_query)
if help_query:
help_response = ask_help_agent(help_query)
st.session_state.help_conversation.append({"query": help_query, "response": help_response})
st.session_state.help_query = "" # Clear the input after sending
st.experimental_rerun()
else:
st.error("Please enter a query!")
if st.session_state.help_conversation:
for msg in st.session_state.help_conversation:
st.markdown(f"**You:** {msg['query']}")
st.markdown(f"**Help Assistant:** {msg['response']}")
# Guess confirmation screen using text input response
elif st.session_state.game_state == "confirm_guess":
st.markdown(f'<div class="question-box">๐Ÿค– My Final Guess:<br><br>'
f'<strong>Is it {st.session_state.final_guess}?</strong></div>',
unsafe_allow_html=True)
with st.form("confirm_form"):
col1, col2 = st.columns([4, 1])
with col1:
confirm_input = st.text_input("Type your answer (yes/no/both):", key="confirm_input").strip().lower()
with col2:
st.write("")
st.write("")
if st.form_submit_button("๐ŸŽค", key="confirm_mic"):
audio_text = microphone_input("confirm_mic")
if audio_text:
st.session_state.confirm_input = audio_text
st.experimental_rerun()
if st.form_submit_button("Submit"):
confirm_input = st.session_state.get("confirm_input", confirm_input)
if confirm_input not in ["yes", "no", "both"]:
st.error("Please answer with 'yes', 'no', or 'both'!")
else:
if confirm_input == "yes":
st.session_state.game_state = "result"
st.experimental_rerun()
else:
# Add negative response to history and continue gameplay
st.session_state.conversation_history.append(
{"role": "user", "content": "no"}
)
st.session_state.game_state = "gameplay"
next_response = ask_llama(
st.session_state.conversation_history,
st.session_state.category
)
st.session_state.questions.append(next_response)
st.session_state.conversation_history.append(
{"role": "assistant", "content": next_response}
)
st.session_state.current_q += 1
st.experimental_rerun()
# Result screen
elif st.session_state.game_state == "result":
if not st.session_state.final_guess:
# Generate final guess if not already made
qa_history = "\n".join(
[f"Q{i+1}: {q}\nA: {a}"
for i, (q, a) in enumerate(zip(st.session_state.questions, st.session_state.answers))]
)
final_guess = ask_llama(
[{"role": "user", "content": qa_history}],
st.session_state.category,
is_final_guess=True
)
st.session_state.final_guess = final_guess.split("Final Guess:")[-1].strip()
show_confetti()
st.markdown(f'<div class="final-reveal">๐ŸŽ‰ It\'s...</div>', unsafe_allow_html=True)
time.sleep(1)
st.markdown(f'<div class="final-reveal" style="font-size:3.5rem;color:#6C63FF;">{st.session_state.final_guess}</div>',
unsafe_allow_html=True)
st.markdown(f"<p style='text-align:center'>Guessed in {len(st.session_state.questions)} questions</p>",
unsafe_allow_html=True)
if st.button("Play Again", key="play_again"):
st.session_state.clear()
st.experimental_rerun()
if __name__ == "__main__":
main()