Spaces:
Sleeping
Sleeping
File size: 1,370 Bytes
e1bf4d4 1509f2d e1bf4d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from flask import Flask, request, render_template
from transformers import pipeline, AutoTokenizer
import torch
app = Flask(__name__)
# Load a lightweight model (e.g., Zephyr-7B, Mistral-7B)
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
chatbot = pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto" # Uses GPU if available
)
@app.route("/", methods=["GET", "POST"])
def home():
if request.method == "POST":
user_input = request.form["user_input"]
response = generate_response(user_input)
return render_template("index.html", user_input=user_input, bot_response=response)
return render_template("index.html")
def generate_response(prompt):
# Format prompt for instruction-following models
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Generate response
outputs = chatbot(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
return outputs[0]["generated_text"][len(prompt):] # Extract only the bot's reply
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True) |