File size: 1,370 Bytes
e1bf4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509f2d
 
e1bf4d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from flask import Flask, request, render_template
from transformers import pipeline, AutoTokenizer
import torch

app = Flask(__name__)

# Load a lightweight model (e.g., Zephyr-7B, Mistral-7B)
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
chatbot = pipeline(
    "text-generation",
    model=model_name,
    tokenizer=tokenizer,
    torch_dtype=torch.float16,
    device_map="auto"  # Uses GPU if available
)

@app.route("/", methods=["GET", "POST"])
def home():
    if request.method == "POST":
        user_input = request.form["user_input"]
        response = generate_response(user_input)
        return render_template("index.html", user_input=user_input, bot_response=response)
    return render_template("index.html")

def generate_response(prompt):
    # Format prompt for instruction-following models
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    # Generate response
    outputs = chatbot(
        prompt,
        max_new_tokens=256,
        do_sample=True,
        temperature=0.7,
        top_k=50,
        top_p=0.95
    )
    return outputs[0]["generated_text"][len(prompt):]  # Extract only the bot's reply

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000, debug=True)