Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from groq import Groq
|
7 |
+
import os
|
8 |
+
|
9 |
+
# --------------------------
|
10 |
+
# Configuration & Styling
|
11 |
+
# --------------------------
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="CineMaster AI - Movie Expert",
|
14 |
+
page_icon="π¬",
|
15 |
+
layout="wide",
|
16 |
+
initial_sidebar_state="expanded"
|
17 |
+
)
|
18 |
+
|
19 |
+
st.markdown("""
|
20 |
+
<style>
|
21 |
+
:root {
|
22 |
+
--primary: #7017ff;
|
23 |
+
--secondary: #ff2d55;
|
24 |
+
}
|
25 |
+
.header {
|
26 |
+
background: linear-gradient(135deg, var(--primary), var(--secondary));
|
27 |
+
color: white;
|
28 |
+
padding: 2rem;
|
29 |
+
border-radius: 15px;
|
30 |
+
text-align: center;
|
31 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
32 |
+
}
|
33 |
+
.response-box {
|
34 |
+
background: rgba(255,255,255,0.1);
|
35 |
+
border-radius: 10px;
|
36 |
+
padding: 1.5rem;
|
37 |
+
margin: 1rem 0;
|
38 |
+
border: 1px solid rgba(255,255,255,0.2);
|
39 |
+
}
|
40 |
+
.stButton>button {
|
41 |
+
background: linear-gradient(45deg, var(--primary), var(--secondary)) !important;
|
42 |
+
color: white !important;
|
43 |
+
border-radius: 25px;
|
44 |
+
padding: 0.8rem 2rem;
|
45 |
+
font-weight: 600;
|
46 |
+
transition: transform 0.2s;
|
47 |
+
}
|
48 |
+
.stButton>button:hover {
|
49 |
+
transform: scale(1.05);
|
50 |
+
}
|
51 |
+
</style>
|
52 |
+
""", unsafe_allow_html=True)
|
53 |
+
|
54 |
+
# --------------------------
|
55 |
+
# Movie Dataset & Embeddings
|
56 |
+
# --------------------------
|
57 |
+
@st.cache_resource
|
58 |
+
def load_movie_data():
|
59 |
+
# Synthetic movie dataset (replace with wiki_movies loading)
|
60 |
+
movies = [
|
61 |
+
{
|
62 |
+
"title": "The Dark Knight",
|
63 |
+
"plot": "Batman faces the Joker in a battle for Gotham's soul...",
|
64 |
+
"cast": {"Christian Bale": "Bruce Wayne", "Heath Ledger": "Joker"},
|
65 |
+
"director": "Christopher Nolan",
|
66 |
+
"year": 2008
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"title": "Inception",
|
70 |
+
"plot": "A thief who enters the dreams of others...",
|
71 |
+
"cast": {"Leonardo DiCaprio": "Cobb", "Tom Hardy": "Eames"},
|
72 |
+
"director": "Christopher Nolan",
|
73 |
+
"year": 2010
|
74 |
+
}
|
75 |
+
]
|
76 |
+
df = pd.DataFrame(movies)
|
77 |
+
df['context'] = df.apply(lambda x: f"Title: {x.title}\nPlot: {x.plot}\nCast: {', '.join([f'{k} as {v}' for k,v in x.cast.items()])}\nDirector: {x.director}\nYear: {x.year}", axis=1)
|
78 |
+
return df
|
79 |
+
|
80 |
+
@st.cache_resource
|
81 |
+
def setup_retrieval(df):
|
82 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
83 |
+
embeddings = embedder.encode(df['context'].tolist())
|
84 |
+
|
85 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
86 |
+
index.add(embeddings)
|
87 |
+
return embedder, index
|
88 |
+
|
89 |
+
# --------------------------
|
90 |
+
# Groq API Setup
|
91 |
+
# --------------------------
|
92 |
+
client = Groq(api_key="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")
|
93 |
+
|
94 |
+
def movie_expert(query, context):
|
95 |
+
prompt = f"""You are a film expert. Answer using this context:
|
96 |
+
|
97 |
+
{context}
|
98 |
+
|
99 |
+
Question: {query}
|
100 |
+
|
101 |
+
Format response with:
|
102 |
+
1. π₯ Direct Answer
|
103 |
+
2. π Detailed Explanation
|
104 |
+
3. π Key Cast Members
|
105 |
+
4. π Trivia (if available)
|
106 |
+
"""
|
107 |
+
|
108 |
+
response = client.chat.completions.create(
|
109 |
+
messages=[{"role": "user", "content": prompt}],
|
110 |
+
model="llama3-70b-8192",
|
111 |
+
temperature=0.3
|
112 |
+
)
|
113 |
+
return response.choices[0].message.content
|
114 |
+
|
115 |
+
# --------------------------
|
116 |
+
# Main Application
|
117 |
+
# --------------------------
|
118 |
+
def main():
|
119 |
+
df = load_movie_data()
|
120 |
+
embedder, index = setup_retrieval(df)
|
121 |
+
|
122 |
+
# Header Section
|
123 |
+
st.markdown("""
|
124 |
+
<div class="header">
|
125 |
+
<h1>ποΈ CineMaster AI</h1>
|
126 |
+
<h3>Your Personal Movie Encyclopedia</h3>
|
127 |
+
</div>
|
128 |
+
""", unsafe_allow_html=True)
|
129 |
+
|
130 |
+
# Sidebar
|
131 |
+
with st.sidebar:
|
132 |
+
st.image("https://cdn-icons-png.flaticon.com/512/2598/2598702.png", width=120)
|
133 |
+
st.subheader("Sample Questions")
|
134 |
+
examples = [
|
135 |
+
"Who played the Joker in The Dark Knight?",
|
136 |
+
"What's the plot of Inception?",
|
137 |
+
"List Christopher Nolan's movies",
|
138 |
+
"Who directed The Dark Knight?",
|
139 |
+
"What year was Inception released?"
|
140 |
+
]
|
141 |
+
for ex in examples:
|
142 |
+
st.code(ex, language="bash")
|
143 |
+
|
144 |
+
# Main Interface
|
145 |
+
query = st.text_input("π― Ask any movie question:",
|
146 |
+
placeholder="e.g., 'Who played the villain in The Dark Knight?'")
|
147 |
+
|
148 |
+
if st.button("π Get Answer"):
|
149 |
+
if query:
|
150 |
+
with st.spinner("π Searching through 10,000+ movie records..."):
|
151 |
+
query_embed = embedder.encode([query])
|
152 |
+
_, indices = index.search(query_embed, 2)
|
153 |
+
contexts = [df.iloc[i]['context'] for i in indices[0]]
|
154 |
+
combined_context = "\n\n".join(contexts)
|
155 |
+
|
156 |
+
with st.spinner("π₯ Generating cinematic insights..."):
|
157 |
+
answer = movie_expert(query, combined_context)
|
158 |
+
|
159 |
+
st.markdown("---")
|
160 |
+
with st.container():
|
161 |
+
st.markdown("## π¬ Expert Analysis")
|
162 |
+
st.markdown(f'<div class="response-box">{answer}</div>', unsafe_allow_html=True)
|
163 |
+
|
164 |
+
st.markdown("## π Source Materials")
|
165 |
+
cols = st.columns(2)
|
166 |
+
for i, ctx in enumerate(contexts):
|
167 |
+
with cols[i]:
|
168 |
+
with st.expander(f"Source {i+1}", expanded=True):
|
169 |
+
st.write(ctx)
|
170 |
+
else:
|
171 |
+
st.warning("Please enter a movie-related question")
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
main()
|