File size: 9,536 Bytes
6600546 312326d 6600546 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 312326d e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 e718ad1 e0d70a2 312326d e0d70a2 312326d e718ad1 e0d70a2 e718ad1 312326d 6600546 312326d 6600546 e718ad1 312326d e718ad1 6600546 e718ad1 6600546 e718ad1 e0d70a2 6600546 e718ad1 6600546 e0d70a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import streamlit as st
import requests
from fpdf import FPDF
import os
import time
from datetime import datetime
import groq
# API keys (replace with your keys or use environment variables)
mistral_api_key = os.getenv("MISTRAL_API_KEY", "gz6lDXokxgR6cLY72oomALWcm7vhjRzQ")
groq_api_key = os.getenv("GROQ_API_KEY", "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")
# Initialize Groq client
groq_client = groq.Client(api_key=groq_api_key)
# Function to call Mistral API
def call_mistral_api(prompt):
start_time = time.time()
url = "https://api.mistral.ai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {mistral_api_key}",
"Content-Type": "application/json"
}
payload = {
"model": "mistral-medium",
"messages": [
{"role": "user", "content": prompt}
]
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status() # Raise an error for bad status codes
end_time = time.time()
speed = end_time - start_time
content = response.json()['choices'][0]['message']['content']
confidence = len(content.split()) # Simulate confidence with response length
return content, speed, confidence
except requests.exceptions.HTTPError as err:
if response.status_code == 429: # Rate limit exceeded
st.warning("Rate limit exceeded. Please wait a few seconds and try again.")
time.sleep(5) # Wait for 5 seconds before retrying
return call_mistral_api(prompt) # Retry the request
return f"HTTP Error: {err}", 0, 0
except Exception as err:
return f"Error: {err}", 0, 0
# Function to call Groq API
def call_groq_api(prompt):
start_time = time.time()
try:
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile", # Correct model name
messages=[
{"role": "user", "content": prompt}
]
)
end_time = time.time()
speed = end_time - start_time
content = response.choices[0].message.content
confidence = len(content.split()) # Simulate confidence with response length
return content, speed, confidence
except Exception as err:
st.error(f"Error: {err}")
return f"Error: {err}", 0, 0
# Function to analyze a single requirement using both models
def analyze_requirement(requirement):
# Use Mistral for classification and domain identification
type_prompt = f"Classify the following requirement as Functional or Non-Functional in one word:\n\n{requirement}\n\nType:"
req_type, type_speed, type_confidence = call_mistral_api(type_prompt)
req_type = req_type.strip()
domain_prompt = f"Classify the domain for the following requirement in one word (e.g., E-commerce, Education, etc.):\n\n{requirement}\n\nDomain:"
domain, domain_speed, domain_confidence = call_mistral_api(domain_prompt)
domain = domain.strip()
# Use Groq for defect analysis and rewriting
defects_prompt = f"""List ONLY the major defects in the following requirement (e.g., Ambiguity, Incompleteness, etc.) in 1-2 words each:\n\n{requirement}\n\nDefects:"""
defects, defects_speed, defects_confidence = call_groq_api(defects_prompt)
defects = defects.strip()
rewritten_prompt = f"""Rewrite the following requirement in 1-2 sentences to address the defects:\n\n{requirement}\n\nRewritten:"""
rewritten, rewritten_speed, rewritten_confidence = call_groq_api(rewritten_prompt)
rewritten = rewritten.strip()
return {
"Requirement": requirement,
"Type": req_type,
"Domain": domain,
"Defects": defects,
"Rewritten": rewritten,
"Type_Speed": type_speed,
"Type_Confidence": type_confidence,
"Domain_Speed": domain_speed,
"Domain_Confidence": domain_confidence,
"Defects_Speed": defects_speed,
"Defects_Confidence": defects_confidence,
"Rewritten_Speed": rewritten_speed,
"Rewritten_Confidence": rewritten_confidence
}
# Function to generate a PDF report
def generate_pdf_report(results):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add watermark
pdf.set_font("Arial", 'B', 50)
pdf.set_text_color(230, 230, 230) # Light gray color for watermark
pdf.rotate(45) # Rotate the text for watermark effect
pdf.text(60, 150, "AI Powered Requirement Analysis")
pdf.rotate(0) # Reset rotation
# Add title and date/time
pdf.set_font("Arial", 'B', 16)
pdf.set_text_color(0, 0, 0) # Black color for title
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirements analysis
pdf.set_font("Arial", size=12)
for i, result in enumerate(results, start=1):
if pdf.get_y() > 250: # If the content is near the bottom of the page
pdf.add_page() # Add a new page
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirement details
pdf.set_font("Arial", 'B', 14)
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L')
pdf.set_font("Arial", size=12)
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L')
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L')
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L')
pdf.multi_cell(200, 10, txt=f"Type Speed: {result['Type_Speed']:.2f}s", align='L')
pdf.multi_cell(200, 10, txt=f"Type Confidence: {result['Type_Confidence']}", align='L')
pdf.multi_cell(200, 10, txt=f"Domain Speed: {result['Domain_Speed']:.2f}s", align='L')
pdf.multi_cell(200, 10, txt=f"Domain Confidence: {result['Domain_Confidence']}", align='L')
pdf.multi_cell(200, 10, txt=f"Defects Speed: {result['Defects_Speed']:.2f}s", align='L')
pdf.multi_cell(200, 10, txt=f"Defects Confidence: {result['Defects_Confidence']}", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten Speed: {result['Rewritten_Speed']:.2f}s", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten Confidence: {result['Rewritten_Confidence']}", align='L')
pdf.multi_cell(200, 10, txt="-" * 50, align='L')
pdf.ln(5) # Add some space between requirements
pdf_output = "requirements_report.pdf"
pdf.output(pdf_output)
return pdf_output
# Streamlit app
def main():
st.title("AI Powered Requirement Analysis and Defect Detection")
st.markdown("**Team Name:** Sadia, Areeba, Rabbia, Tesmia")
st.markdown("**Models:** Mistral (Classification & Domain) + Groq (Defects & Rewriting)")
# Input requirements manually
input_text = st.text_area("Enter your requirements (one per line or separated by periods):")
requirements = []
if input_text:
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()]
# Analyze requirements
if st.button("Analyze Requirements"):
if not requirements:
st.warning("Please enter requirements.")
else:
results = []
for req in requirements:
if req.strip(): # Ignore empty lines
results.append(analyze_requirement(req.strip()))
# Display results
st.subheader("Analysis Results")
for i, result in enumerate(results, start=1):
st.write(f"### Requirement R{i}: {result['Requirement']}")
st.write(f"**Type:** {result['Type']}")
st.write(f"**Domain:** {result['Domain']}")
st.write(f"**Defects:** {result['Defects']}")
st.write(f"**Rewritten:** {result['Rewritten']}")
st.write(f"**Type Speed:** {result['Type_Speed']:.2f}s")
st.write(f"**Type Confidence:** {result['Type_Confidence']}")
st.write(f"**Domain Speed:** {result['Domain_Speed']:.2f}s")
st.write(f"**Domain Confidence:** {result['Domain_Confidence']}")
st.write(f"**Defects Speed:** {result['Defects_Speed']:.2f}s")
st.write(f"**Defects Confidence:** {result['Defects_Confidence']}")
st.write(f"**Rewritten Speed:** {result['Rewritten_Speed']:.2f}s")
st.write(f"**Rewritten Confidence:** {result['Rewritten_Confidence']}")
st.write("---")
# Generate and download PDF report
pdf_report = generate_pdf_report(results)
with open(pdf_report, "rb") as f:
st.download_button(
label="Download PDF Report",
data=f,
file_name="requirements_report.pdf",
mime="application/pdf"
)
# Run the app
if __name__ == "__main__":
main() |