Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import gc | |
| import json | |
| import torch | |
| import spaces | |
| from huggingface_hub import hf_hub_download | |
| from diffusers import ( | |
| AutoencoderKL, | |
| SD3Transformer2DModel, | |
| StableDiffusion3Pipeline, | |
| FlowMatchEulerDiscreteScheduler | |
| ) | |
| from diffusers.loaders.single_file_utils import ( | |
| convert_sd3_transformer_checkpoint_to_diffusers, | |
| ) | |
| from transformers import ( | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| T5EncoderModel, | |
| T5Tokenizer | |
| ) | |
| from accelerate import init_empty_weights | |
| from safetensors import safe_open | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/stable-diffusion-3.5-large" | |
| finetune_repo_id = "DoctorDiffusion/Absynth-2.0" | |
| finetune_filename = "Absynth_SD3.5L_2.0.safetensors" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.bfloat16 | |
| else: | |
| torch_dtype = torch.float32 | |
| # Initialize transformer | |
| config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json") | |
| with open(config_file, "r") as fp: | |
| config = json.load(fp) | |
| with init_empty_weights(): | |
| transformer = SD3Transformer2DModel.from_config(config) | |
| # Get transformer state dict and load | |
| model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename) | |
| state_dict = {} | |
| with safe_open(model_file, framework="pt") as f: | |
| for key in f.keys(): | |
| state_dict[key] = f.get_tensor(key) | |
| state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict) | |
| transformer.load_state_dict(state_dict) | |
| # Try to keep memory usage down | |
| del state_dict | |
| gc.collect() | |
| # Initialize models from base SD3.5 | |
| vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae") | |
| text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder") | |
| text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2") | |
| text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3") | |
| tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer") | |
| tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2") | |
| tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3") | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler") | |
| # Create pipeline from our models | |
| pipe = StableDiffusion3Pipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| text_encoder_3=text_encoder_3, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| tokenizer_3=tokenizer_3, | |
| transformer=transformer | |
| ) | |
| pipe = pipe.to(device, dtype=torch_dtype) | |
| # The rest of the code is from the official SD3.5 space | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer( | |
| prompt, | |
| negative_prompt="", | |
| seed=42, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=4.5, | |
| num_inference_steps=40, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "A capybara wearing a suit holding a sign that reads Hello World", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)") | |
| gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers.") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=7.5, | |
| step=0.1, | |
| value=4.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=40, | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |