Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import random
|
| 3 |
import uuid
|
|
@@ -9,6 +19,14 @@ import spaces
|
|
| 9 |
import torch
|
| 10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
| 13 |
|
| 14 |
|
|
@@ -22,6 +40,7 @@ DESCRIPTIONy = """
|
|
| 22 |
</p>
|
| 23 |
"""
|
| 24 |
|
|
|
|
| 25 |
css = '''
|
| 26 |
.gradio-container{max-width: 560px !important}
|
| 27 |
h1{text-align:center}
|
|
@@ -33,17 +52,34 @@ footer {
|
|
| 33 |
examples = [
|
| 34 |
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
| 35 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
| 36 |
-
"Vector illustration of a horse, vector graphic design with flat colors on
|
| 37 |
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
| 38 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
|
|
|
| 39 |
]
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 43 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 44 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 45 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 46 |
|
|
|
|
| 47 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 48 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 49 |
MODEL_ID,
|
|
@@ -53,9 +89,11 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
| 53 |
).to(device)
|
| 54 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 55 |
|
|
|
|
| 56 |
if USE_TORCH_COMPILE:
|
| 57 |
pipe.compile()
|
| 58 |
|
|
|
|
| 59 |
if ENABLE_CPU_OFFLOAD:
|
| 60 |
pipe.enable_model_cpu_offload()
|
| 61 |
|
|
@@ -82,24 +120,14 @@ def generate(
|
|
| 82 |
guidance_scale: float = 3,
|
| 83 |
num_inference_steps: int = 25,
|
| 84 |
randomize_seed: bool = False,
|
| 85 |
-
use_resolution_binning: bool = True,
|
| 86 |
-
|
| 87 |
progress=gr.Progress(track_tqdm=True),
|
| 88 |
):
|
| 89 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 90 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 91 |
|
| 92 |
-
|
| 93 |
-
"2x1": (2, 1),
|
| 94 |
-
"1x2": (1, 2),
|
| 95 |
-
"2x2": (2, 2),
|
| 96 |
-
"2x3": (2, 3),
|
| 97 |
-
"3x2": (3, 2),
|
| 98 |
-
"1x1": (1, 1)
|
| 99 |
-
}
|
| 100 |
-
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2))
|
| 101 |
-
num_images = grid_size_x * grid_size_y
|
| 102 |
-
|
| 103 |
options = {
|
| 104 |
"prompt": [prompt] * num_images,
|
| 105 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
@@ -111,9 +139,11 @@ def generate(
|
|
| 111 |
"output_type": "pil",
|
| 112 |
}
|
| 113 |
|
|
|
|
| 114 |
if use_resolution_binning:
|
| 115 |
options["use_resolution_binning"] = True
|
| 116 |
|
|
|
|
| 117 |
images = []
|
| 118 |
for i in range(0, num_images, BATCH_SIZE):
|
| 119 |
batch_options = options.copy()
|
|
@@ -122,17 +152,11 @@ def generate(
|
|
| 122 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 123 |
images.extend(pipe(**batch_options).images)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
for i, img in enumerate(images[:num_images]):
|
| 129 |
-
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
|
| 130 |
-
|
| 131 |
-
unique_name = save_image(grid_img)
|
| 132 |
-
return unique_name, seed
|
| 133 |
-
|
| 134 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 135 |
-
gr.Markdown(DESCRIPTIONx)
|
| 136 |
|
| 137 |
with gr.Group():
|
| 138 |
with gr.Row():
|
|
@@ -145,23 +169,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 145 |
)
|
| 146 |
run_button = gr.Button("Run", scale=0)
|
| 147 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
| 148 |
-
|
| 149 |
-
with gr.Row(visible=True):
|
| 150 |
-
grid_size_selection = gr.Dropdown(
|
| 151 |
-
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
|
| 152 |
-
value="1x1",
|
| 153 |
-
label="⚡Grid"
|
| 154 |
-
)
|
| 155 |
with gr.Accordion("Advanced options", open=False, visible=False):
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
value=1,
|
| 164 |
-
)
|
| 165 |
with gr.Row():
|
| 166 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 167 |
negative_prompt = gr.Text(
|
|
@@ -241,12 +256,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 241 |
guidance_scale,
|
| 242 |
num_inference_steps,
|
| 243 |
randomize_seed,
|
| 244 |
-
|
| 245 |
],
|
| 246 |
outputs=[result, seed],
|
| 247 |
api_name="run",
|
| 248 |
)
|
| 249 |
|
|
|
|
|
|
|
| 250 |
gr.Markdown(DESCRIPTIONy)
|
| 251 |
|
| 252 |
gr.Markdown("**Disclaimer:**")
|
|
@@ -255,5 +272,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 255 |
gr.Markdown("**Note:**")
|
| 256 |
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
|
| 257 |
|
|
|
|
|
|
|
| 258 |
if __name__ == "__main__":
|
| 259 |
demo.queue(max_size=40).launch()
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
#patch 2.0 ()
|
| 3 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 4 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 5 |
+
# in the Software without restriction, including without limitation the rights
|
| 6 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 7 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 8 |
+
# furnished to do so, subject to the following conditions:
|
| 9 |
+
#
|
| 10 |
+
# ...
|
| 11 |
import os
|
| 12 |
import random
|
| 13 |
import uuid
|
|
|
|
| 19 |
import torch
|
| 20 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 21 |
|
| 22 |
+
#Load the HTML content
|
| 23 |
+
#html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
|
| 24 |
+
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>'
|
| 25 |
+
#html_file_url = "https://prithivmlmods-static-loading-theme.static.hf.space/index.html"
|
| 26 |
+
|
| 27 |
+
#html_file_url = "https://prithivhamster.vercel.app/"
|
| 28 |
+
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:400px; border:none"></iframe>'
|
| 29 |
+
|
| 30 |
DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
| 31 |
|
| 32 |
|
|
|
|
| 40 |
</p>
|
| 41 |
"""
|
| 42 |
|
| 43 |
+
|
| 44 |
css = '''
|
| 45 |
.gradio-container{max-width: 560px !important}
|
| 46 |
h1{text-align:center}
|
|
|
|
| 52 |
examples = [
|
| 53 |
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
| 54 |
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
| 55 |
+
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
|
| 56 |
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
| 57 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
| 58 |
+
|
| 59 |
]
|
| 60 |
|
| 61 |
+
|
| 62 |
+
#examples = [
|
| 63 |
+
# ["file/1.png", "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)"],
|
| 64 |
+
# ["file/2.png", "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K"],
|
| 65 |
+
#["file/3.png", "Vector illustration of a horse, vector graphic design with flat colors on a brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw"],
|
| 66 |
+
#["file/4.png", "Man in brown leather jacket posing for the camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5"],
|
| 67 |
+
#["file/5.png", "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on a white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16"]
|
| 68 |
+
#]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
#Set an os.Getenv variable
|
| 72 |
+
#set VAR_NAME=”VALUE”
|
| 73 |
+
#Fetch an environment variable
|
| 74 |
+
#echo %VAR_NAME%
|
| 75 |
+
|
| 76 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") #Use SDXL Model as "MODEL_REPO" --------->>> ”VALUE”.
|
| 77 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 78 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 79 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 80 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
| 81 |
|
| 82 |
+
#Load model outside of function
|
| 83 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 84 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 85 |
MODEL_ID,
|
|
|
|
| 89 |
).to(device)
|
| 90 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 91 |
|
| 92 |
+
# <compile speedup >
|
| 93 |
if USE_TORCH_COMPILE:
|
| 94 |
pipe.compile()
|
| 95 |
|
| 96 |
+
# Offloading capacity (RAM)
|
| 97 |
if ENABLE_CPU_OFFLOAD:
|
| 98 |
pipe.enable_model_cpu_offload()
|
| 99 |
|
|
|
|
| 120 |
guidance_scale: float = 3,
|
| 121 |
num_inference_steps: int = 25,
|
| 122 |
randomize_seed: bool = False,
|
| 123 |
+
use_resolution_binning: bool = True,
|
| 124 |
+
num_images: int = 1, # Number of images to generate
|
| 125 |
progress=gr.Progress(track_tqdm=True),
|
| 126 |
):
|
| 127 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 128 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 129 |
|
| 130 |
+
#Options
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
options = {
|
| 132 |
"prompt": [prompt] * num_images,
|
| 133 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
|
| 139 |
"output_type": "pil",
|
| 140 |
}
|
| 141 |
|
| 142 |
+
#VRAM usage Lesser
|
| 143 |
if use_resolution_binning:
|
| 144 |
options["use_resolution_binning"] = True
|
| 145 |
|
| 146 |
+
#Images potential batches
|
| 147 |
images = []
|
| 148 |
for i in range(0, num_images, BATCH_SIZE):
|
| 149 |
batch_options = options.copy()
|
|
|
|
| 152 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 153 |
images.extend(pipe(**batch_options).images)
|
| 154 |
|
| 155 |
+
image_paths = [save_image(img) for img in images]
|
| 156 |
+
return image_paths, seed
|
| 157 |
+
#Main gr.Block
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 159 |
+
gr.Markdown(DESCRIPTIONx)
|
| 160 |
|
| 161 |
with gr.Group():
|
| 162 |
with gr.Row():
|
|
|
|
| 169 |
)
|
| 170 |
run_button = gr.Button("Run", scale=0)
|
| 171 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
with gr.Accordion("Advanced options", open=False, visible=False):
|
| 173 |
+
num_images = gr.Slider(
|
| 174 |
+
label="Number of Images",
|
| 175 |
+
minimum=1,
|
| 176 |
+
maximum=4,
|
| 177 |
+
step=1,
|
| 178 |
+
value=1,
|
| 179 |
+
)
|
|
|
|
|
|
|
| 180 |
with gr.Row():
|
| 181 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 182 |
negative_prompt = gr.Text(
|
|
|
|
| 256 |
guidance_scale,
|
| 257 |
num_inference_steps,
|
| 258 |
randomize_seed,
|
| 259 |
+
num_images
|
| 260 |
],
|
| 261 |
outputs=[result, seed],
|
| 262 |
api_name="run",
|
| 263 |
)
|
| 264 |
|
| 265 |
+
|
| 266 |
+
|
| 267 |
gr.Markdown(DESCRIPTIONy)
|
| 268 |
|
| 269 |
gr.Markdown("**Disclaimer:**")
|
|
|
|
| 272 |
gr.Markdown("**Note:**")
|
| 273 |
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
|
| 274 |
|
| 275 |
+
#gr.HTML(html_content)
|
| 276 |
+
|
| 277 |
if __name__ == "__main__":
|
| 278 |
demo.queue(max_size=40).launch()
|