import gradio as gr from PIL import Image import base64 import io import cv2 import numpy as np import torch from controlnet_aux import HEDdetector from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler def predict(sketch, description): # Convert sketch to PIL image sketch_pil = Image.fromarray(sketch) hed = HEDdetector.from_pretrained('lllyasviel/Annotators') image = hed(sketch_pil, scribble=True) model_id = "runwayml/stable-diffusion-v1-5" controlnet_id = "lllyasviel/sd-controlnet-scribble" # Load ControlNet model controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16) # Create pipeline with ControlNet model pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet, torch_dtype=torch.float16) # Use improved scheduler pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # Enable smart CPU offloading and memory efficient attention # pipe.enable_model_cpu_offload() pipe.enable_xformers_memory_efficient_attention() result = pipe(description, image, num_inference_steps=20).images[0] return result # Define sketchpad with custom size and stroke width sketchpad = gr.Sketchpad(shape=(1024, 1024), brush_radius=5) iface = gr.Interface(fn=predict, inputs=[sketchpad, "text"], outputs="image", live=False) iface.launch(share=True)