Spaces:
Running
Running
Samuel Stevens
commited on
Commit
·
a33c93d
1
Parent(s):
6ee7e7c
try hierarchical averaging
Browse files- app.py +1 -0
- examples/Sarcoscypha-coccinea.jpeg +3 -0
- lib.py +50 -6
- make_txt_embedding.py +48 -5
- test_lib.py +57 -0
app.py
CHANGED
|
@@ -37,6 +37,7 @@ open_domain_examples = [
|
|
| 37 |
["examples/Ursus-arctos.jpeg", "Species"],
|
| 38 |
["examples/Phoca-vitulina.png", "Species"],
|
| 39 |
["examples/Felis-catus.jpeg", "Genus"],
|
|
|
|
| 40 |
]
|
| 41 |
zero_shot_examples = [
|
| 42 |
[
|
|
|
|
| 37 |
["examples/Ursus-arctos.jpeg", "Species"],
|
| 38 |
["examples/Phoca-vitulina.png", "Species"],
|
| 39 |
["examples/Felis-catus.jpeg", "Genus"],
|
| 40 |
+
["examples/Sarcoscypha-coccinea.jpeg", "Order"],
|
| 41 |
]
|
| 42 |
zero_shot_examples = [
|
| 43 |
[
|
examples/Sarcoscypha-coccinea.jpeg
ADDED
|
Git LFS Details
|
lib.py
CHANGED
|
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import itertools
|
| 2 |
import json
|
| 3 |
|
|
@@ -33,12 +43,30 @@ class TaxonomicNode:
|
|
| 33 |
|
| 34 |
return self._children[first].children(rest)
|
| 35 |
|
| 36 |
-
def
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
for child in self._children.values():
|
| 40 |
-
for name, index in child:
|
| 41 |
-
yield
|
| 42 |
|
| 43 |
@classmethod
|
| 44 |
def from_dict(cls, dct, root):
|
|
@@ -82,9 +110,25 @@ class TaxonomicTree:
|
|
| 82 |
|
| 83 |
return self.kingdoms[first].children(rest)
|
| 84 |
|
| 85 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
for kingdom in self.kingdoms.values():
|
| 87 |
-
yield from kingdom
|
| 88 |
|
| 89 |
def __len__(self):
|
| 90 |
return self.size
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Mostly a TaxonomicTree class that implements a taxonomy and some helpers for easily
|
| 3 |
+
walking and looking in the tree.
|
| 4 |
+
|
| 5 |
+
A tree is an arrangement of TaxonomicNodes.
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
|
| 11 |
import itertools
|
| 12 |
import json
|
| 13 |
|
|
|
|
| 43 |
|
| 44 |
return self._children[first].children(rest)
|
| 45 |
|
| 46 |
+
def descendants(self, prefix=None):
|
| 47 |
+
"""Iterates over all values in the subtree that match prefix."""
|
| 48 |
+
|
| 49 |
+
if not prefix:
|
| 50 |
+
yield (self.name,), self.index
|
| 51 |
+
for child in self._children.values():
|
| 52 |
+
for name, i in child.descendants():
|
| 53 |
+
yield (self.name, *name), i
|
| 54 |
+
return
|
| 55 |
+
|
| 56 |
+
first, rest = prefix[0], prefix[1:]
|
| 57 |
+
if first not in self._children:
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
for name, i in self._children[first].descendants(rest):
|
| 61 |
+
yield (self.name, *name), i
|
| 62 |
+
|
| 63 |
+
def values(self):
|
| 64 |
+
"""Iterates over all (name, i) pairs in the tree."""
|
| 65 |
+
yield (self.name,), self.index
|
| 66 |
|
| 67 |
for child in self._children.values():
|
| 68 |
+
for name, index in child.values():
|
| 69 |
+
yield (self.name, *name), index
|
| 70 |
|
| 71 |
@classmethod
|
| 72 |
def from_dict(cls, dct, root):
|
|
|
|
| 110 |
|
| 111 |
return self.kingdoms[first].children(rest)
|
| 112 |
|
| 113 |
+
def descendants(self, prefix=None):
|
| 114 |
+
"""Iterates over all values in the tree that match prefix."""
|
| 115 |
+
if not prefix:
|
| 116 |
+
# Give them all the subnodes
|
| 117 |
+
for kingdom in self.kingdoms.values():
|
| 118 |
+
yield from kingdom.descendants()
|
| 119 |
+
|
| 120 |
+
return
|
| 121 |
+
|
| 122 |
+
first, rest = prefix[0], prefix[1:]
|
| 123 |
+
if first not in self.kingdoms:
|
| 124 |
+
return
|
| 125 |
+
|
| 126 |
+
yield from self.kingdoms[first].descendants(rest)
|
| 127 |
+
|
| 128 |
+
def values(self):
|
| 129 |
+
"""Iterates over all (name, i) pairs in the tree."""
|
| 130 |
for kingdom in self.kingdoms.values():
|
| 131 |
+
yield from kingdom.values()
|
| 132 |
|
| 133 |
def __len__(self):
|
| 134 |
return self.size
|
make_txt_embedding.py
CHANGED
|
@@ -6,20 +6,28 @@ import argparse
|
|
| 6 |
import csv
|
| 7 |
import json
|
| 8 |
import os
|
|
|
|
| 9 |
|
| 10 |
import numpy as np
|
| 11 |
import torch
|
| 12 |
import torch.nn.functional as F
|
|
|
|
| 13 |
from open_clip import create_model, get_tokenizer
|
| 14 |
from tqdm import tqdm
|
| 15 |
|
| 16 |
import lib
|
| 17 |
from templates import openai_imagenet_template
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
model_str = "hf-hub:imageomics/bioclip"
|
| 20 |
tokenizer_str = "ViT-B-16"
|
| 21 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
| 24 |
@torch.no_grad()
|
| 25 |
def write_txt_features(name_lookup):
|
|
@@ -38,7 +46,7 @@ def write_txt_features(name_lookup):
|
|
| 38 |
):
|
| 39 |
# Skip if any non-zero elements
|
| 40 |
if all_features[:, indices].any():
|
| 41 |
-
|
| 42 |
continue
|
| 43 |
|
| 44 |
txts = [
|
|
@@ -59,6 +67,41 @@ def write_txt_features(name_lookup):
|
|
| 59 |
np.save(args.out_path, all_features)
|
| 60 |
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def get_name_lookup(catalog_path, cache_path):
|
| 63 |
if os.path.isfile(cache_path):
|
| 64 |
with open(cache_path) as fd:
|
|
@@ -106,14 +149,14 @@ if __name__ == "__main__":
|
|
| 106 |
args = parser.parse_args()
|
| 107 |
|
| 108 |
name_lookup = get_name_lookup(args.catalog_path, cache_path=args.name_cache_path)
|
| 109 |
-
|
| 110 |
|
| 111 |
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
| 112 |
model = model.to(device)
|
| 113 |
-
|
| 114 |
-
|
| 115 |
model = torch.compile(model)
|
| 116 |
-
|
| 117 |
|
| 118 |
tokenizer = get_tokenizer(tokenizer_str)
|
| 119 |
write_txt_features(name_lookup)
|
|
|
|
|
|
| 6 |
import csv
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
+
import logging
|
| 10 |
|
| 11 |
import numpy as np
|
| 12 |
import torch
|
| 13 |
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
from open_clip import create_model, get_tokenizer
|
| 16 |
from tqdm import tqdm
|
| 17 |
|
| 18 |
import lib
|
| 19 |
from templates import openai_imagenet_template
|
| 20 |
|
| 21 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
| 22 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
| 23 |
+
logger = logging.getLogger()
|
| 24 |
+
|
| 25 |
model_str = "hf-hub:imageomics/bioclip"
|
| 26 |
tokenizer_str = "ViT-B-16"
|
| 27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
|
| 29 |
+
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
| 30 |
+
|
| 31 |
|
| 32 |
@torch.no_grad()
|
| 33 |
def write_txt_features(name_lookup):
|
|
|
|
| 46 |
):
|
| 47 |
# Skip if any non-zero elements
|
| 48 |
if all_features[:, indices].any():
|
| 49 |
+
logger.info(f"Skipping batch {batch}")
|
| 50 |
continue
|
| 51 |
|
| 52 |
txts = [
|
|
|
|
| 67 |
np.save(args.out_path, all_features)
|
| 68 |
|
| 69 |
|
| 70 |
+
def convert_txt_features_to_avgs(name_lookup):
|
| 71 |
+
assert os.path.isfile(args.out_path)
|
| 72 |
+
|
| 73 |
+
# Put that big boy on the GPU. We're going fast.
|
| 74 |
+
all_features = torch.from_numpy(np.load(args.out_path)).to(device)
|
| 75 |
+
logger.info("Loaded text features from disk to %s.", device)
|
| 76 |
+
|
| 77 |
+
all_names = [set() for rank in ranks]
|
| 78 |
+
for name, index in tqdm(name_lookup.values()):
|
| 79 |
+
i = len(name) - 1
|
| 80 |
+
all_names[i].add((name, index))
|
| 81 |
+
|
| 82 |
+
zeroed = 0
|
| 83 |
+
for i, rank in reversed(list(enumerate(ranks))):
|
| 84 |
+
if rank == "Species":
|
| 85 |
+
continue
|
| 86 |
+
for name, index in tqdm(all_names[i], desc=rank):
|
| 87 |
+
species = tuple(zip(*((d, i) for d, i in name_lookup.descendants(prefix=name) if len(d) >= 7)))
|
| 88 |
+
if not species:
|
| 89 |
+
logger.warning("No species for %s.", " ".join(name))
|
| 90 |
+
all_features[:, index] = 0.0
|
| 91 |
+
zeroed += 1
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
values, indices = species
|
| 96 |
+
mean = all_features[:, indices].mean(dim=1)
|
| 97 |
+
all_features[:, index] = F.normalize(mean, dim=0)
|
| 98 |
+
|
| 99 |
+
out_path, ext = os.path.splitext(args.out_path)
|
| 100 |
+
np.save(f"{out_path}_avgs{ext}", all_features.cpu().numpy())
|
| 101 |
+
if zeroed:
|
| 102 |
+
logger.warning("Zeroed out %d nodes because they didn't have any genus or species-level labels.", zeroed)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
def get_name_lookup(catalog_path, cache_path):
|
| 106 |
if os.path.isfile(cache_path):
|
| 107 |
with open(cache_path) as fd:
|
|
|
|
| 149 |
args = parser.parse_args()
|
| 150 |
|
| 151 |
name_lookup = get_name_lookup(args.catalog_path, cache_path=args.name_cache_path)
|
| 152 |
+
logger.info("Got name lookup.")
|
| 153 |
|
| 154 |
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
| 155 |
model = model.to(device)
|
| 156 |
+
logger.info("Created model.")
|
|
|
|
| 157 |
model = torch.compile(model)
|
| 158 |
+
logger.info("Compiled model.")
|
| 159 |
|
| 160 |
tokenizer = get_tokenizer(tokenizer_str)
|
| 161 |
write_txt_features(name_lookup)
|
| 162 |
+
convert_txt_features_to_avgs(name_lookup)
|
test_lib.py
CHANGED
|
@@ -422,3 +422,60 @@ def test_taxonomiclookup_children_of_gorilla():
|
|
| 422 |
)
|
| 423 |
expected = set()
|
| 424 |
assert actual == expected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
)
|
| 423 |
expected = set()
|
| 424 |
assert actual == expected
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def test_taxonomictree_descendants_last():
|
| 428 |
+
lookup = lib.TaxonomicTree()
|
| 429 |
+
|
| 430 |
+
lookup.add(("A", "B", "C", "D", "E", "F", "G"))
|
| 431 |
+
|
| 432 |
+
actual = list(lookup.descendants(("A", "B", "C", "D", "E", "F", "G")))
|
| 433 |
+
|
| 434 |
+
expected = [
|
| 435 |
+
(("A", "B", "C", "D", "E", "F", "G"), 6),
|
| 436 |
+
]
|
| 437 |
+
assert actual == expected
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
def test_taxonomictree_descendants_entire_tree():
|
| 441 |
+
lookup = lib.TaxonomicTree()
|
| 442 |
+
|
| 443 |
+
lookup.add(("A", "B"))
|
| 444 |
+
|
| 445 |
+
actual = list(lookup.descendants())
|
| 446 |
+
|
| 447 |
+
expected = [
|
| 448 |
+
(("A",), 0),
|
| 449 |
+
(("A", "B"), 1),
|
| 450 |
+
]
|
| 451 |
+
assert actual == expected
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def test_taxonomictree_descendants_entire_tree_with_prefix():
|
| 455 |
+
lookup = lib.TaxonomicTree()
|
| 456 |
+
|
| 457 |
+
lookup.add(("A", "B"))
|
| 458 |
+
|
| 459 |
+
actual = list(lookup.descendants(prefix=("A",)))
|
| 460 |
+
|
| 461 |
+
expected = [
|
| 462 |
+
(("A",), 0),
|
| 463 |
+
(("A", "B"), 1),
|
| 464 |
+
]
|
| 465 |
+
assert actual == expected
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def test_taxonomictree_descendants_general():
|
| 469 |
+
lookup = lib.TaxonomicTree()
|
| 470 |
+
|
| 471 |
+
lookup.add(("A", "B", "C", "D", "E", "F", "G"))
|
| 472 |
+
|
| 473 |
+
actual = list(lookup.descendants(("A", "B", "C", "D")))
|
| 474 |
+
|
| 475 |
+
expected = [
|
| 476 |
+
(("A", "B", "C", "D"), 3),
|
| 477 |
+
(("A", "B", "C", "D", "E"), 4),
|
| 478 |
+
(("A", "B", "C", "D", "E", "F"), 5),
|
| 479 |
+
(("A", "B", "C", "D", "E", "F", "G"), 6),
|
| 480 |
+
]
|
| 481 |
+
assert actual == expected
|